精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C是⊙O上一点,D的中点,BDAC于点E,过点DDFACBA的延长线于点F.

(1)求证:DF是⊙O的切线;

(2)若AF=2,FD=4,求tanBEC的值.

【答案】(1)证明见解析;(2)tan∠BEC=2

【解析】分析:(1)欲证明DF是⊙O的切线,只要证明OD⊥DF ,ODAC

即可。(2)连接AD,在△ODF中利用勾股定理可求出⊙O的半径,由△ABE∽△FBD可得AE=3,再由BDA∽△ADE可得,而BEC=∠AED从而即可得出结果。

本题解析:

(1)证明:连接OD

D的中点 ∴ODAC

DFAC ODDF

OD为⊙O的半径 ∴直线AB是⊙O的切线

(2)连接AD,设⊙O的半径为r,则OD=OA=rOF=2+r

∵∠ODF=90°, ∴,解得:r=3,∴AB=6,BF=8

DFAC,∴△ABE∽△FBD, ∴,即,∴AE=3

D的中点,∴∠B=∠DAE

∵∠BDA=∠ADE,∴△BDA∽△ADE, ∴ ,

AB是⊙O的直径, ∴∠ADB=90°, ∴tan∠AED=

∵∠BEC=∠AED,∴tan∠BEC=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,,照此规律排列下去,则第8个图中小正方形的个数是(  )

A. 48B. 63C. 80D. 99

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展以迎新年为主题的艺术活动,举办了四个项目的比赛.它们分别是:A演讲、B唱歌、C书法、D绘画.要求每位同学必须参加且限报一项.以九()班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题:

(1)求出参加绘画比赛的学生人数占全班总人数的百分比;

(2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数;

(3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于a的方程2a2)=a+4的解也是关于x的方程2x3)﹣b7的解.

1)求ab的值;

2)若线段ABa,在直线AB上取一点P,恰好使b,点QPB的中点,请画出图形并求出线段AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在同一条直线上,ODOE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:,给出定义如下:我们称使等式abab+1的成立的一对有理数ab共生有理数对,记为(ab),如:数对 ,都是共生有理数对

1)数对 中是共生有理数对的是   

2)若(mn)是共生有理数对,则(﹣n,﹣m   共生有理数对(填不是);

3)请再写出一对符合条件的共生有理数对   ;(注意:不能与题目中已有的共生有理数对重复)

4)若(a3)是共生有理数对,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018628日,深湛高铁正式运营.从湛江到广州全程约468km,高铁开通后,运行时间比特快列车所用的时间减少了6h.若高铁列车的平均速度是特快列车平均速度的3倍,求特快列车与高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.

1)填空:a   b   c   

2)先化简,再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,CD平分∠ACBCD的垂直平分线分别交ACDCBC

于点EFG,连接DEDG

(1)求证:四边形DGCE是菱形;

(2)若∠ACB=30°,∠B=45°CG=10,求BG的长.

查看答案和解析>>

同步练习册答案