精英家教网 > 初中数学 > 题目详情
11.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情况.情形一:如图2,沿等腰三角形△ABC顶角∠BAC的平分线AD折叠,点B与点C重合;情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”)
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,并说明理由.根据以上内容猜想:若经过n 次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为∠B=n∠C.
应用提升
(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是5°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

分析 (1)仔细分析题意根据折叠的性质及“好角”的定义即可作出判断;
(2)因为经过三次折叠∠BAC是△ABC的好角,所以第三次折叠的∠A2B2C=∠C,由∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C,由此即可求得结果;
(3)因为最小角是5°是△ABC的好角,根据好角定义,则可设另两角分别为5m°,5mn°(其中m、n都是正整数),由题意得5m+5mn+5=180,所以m(n+1)=35,再根据m、n都是正整数可得 m与n+1是35的整数因子,从而可以求得结果.

解答 解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;
理由如下:小丽展示的情形二中,
∵沿∠BAC的平分线AB1折叠,
∴∠B=∠AA1B1
又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C;
故答案是:是;
(2)∠B=3∠C;
在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.
证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2
∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1B1C=∠BAC+2∠B-2C=180°,
根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;
由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;
由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;
故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;
(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,
因为最小角是5°是△ABC的好角,
根据好角定义,则可设另两角分别为5m°,5mn°(其中m、n都是正整数).
由题意,得5m+5mn+5=180,所以m(n+1)=35.
因为m、n都是正整数,所以m与n+1是35的整数因子,
因此有:m=1,n+1=35;m=5,n+1=7;
所以m=1,n=34;m=5,n=6;
所以5m=5,5mn=170;5m=25,5mn=150.
所以该三角形的另外两个角的度数分别为:5°,170°;25°,150°.

点评 此题是几何变换综合题,主要考查了折叠问题,找规律,三角形的内角和定理,从折叠有限次数中找到规律是解本题的关键,也是难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)在函数y=$\frac{1}{x}$(x>0)的图象上,△P1OA,△P2A1A2,△P3A2A3,…,△PnAn-1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An-1An都在x轴上(n是大于或等于2的正整数).若△P1OA1的内接正方形B1C1D1E1的周长记为l1,△P2A1A2的内接正方形的周长记为l2,…,△PnAn-1An的内接正方形BnCnDnEn的周长记为ln,则l1+l2+l3+…+ln=$\frac{8}{3}$$\sqrt{n}$(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=$\frac{4}{5}$t2;③cos∠ABE=$\frac{3}{5}$;④当t=$\frac{29}{2}$秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是$\sqrt{10}$或$\frac{51}{5}$; 其中正确的结论是②④.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,四边形ABCD和AEGF都是菱形,∠A=60°,AD=3,点E,F分别在AB,AD边上(不与端点重合),当△GBC为等腰三角形时,AF的长为3-$\sqrt{3}$或2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在△ABC中,∠C=90°,AC=$2\sqrt{5}$,∠A的角平分线交BC于D,且AD=$\frac{4}{3}\sqrt{15}$,则tanB的值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若变量y与变量x的函数关系是y=-(x-m)2-m2+5,在-1≤x≤3范围内的最大值为4,则常数m的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知反比例函数y=$\frac{k}{x}$,当x=2时,y=1,则一次函数y=kx+1的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.一个小球由静止开始从一个斜坡上滚下,其速度每秒增加3米.
(1)写出小球的速度v(米/秒)与时间t(秒)之间的函数表达式;
(2)画出这个函数图象.

查看答案和解析>>

同步练习册答案