分析 (1)由BD为∠ABC的平分线,得到∠ABC=2∠DBC,等量代换得到∠ABC=∠C,证得AB=AC,即可得到结论;
(2)如图2,截取BE=AB,连接DE,推出△ABD≌△EBD,根据全等三角形的性质得到∠A=∠DEB,AD=ED,由∠A=2∠C,得到∠DEB=2∠C,求出∠C=∠EDB,得到ED=EC即可得到结论;
(3)过B作BF平分∠DBC交AC于F,根据角平分线的性质得到BD平分∠ABC,∠ABC=2∠ABD=2∠CBD,由∠ABC=2∠ACB,得到∠ACB=∠ABD=∠CBD,由角平分线的定义得到∠1=∠3=$\frac{1}{2}$∠DBC,∠4=∠2=$\frac{1}{2}$∠ACB,推出△OBC≌△FCB,根据全等三角形的性质得到OC=BF,由AB=OC,得到BF=AB等量代换得到∠ABF=∠AFB,求得AB=AF,即可得到结论;
(4)作图解答即可.
解答 (1)证明:∵BD为∠ABC的平分线,
∴∠ABC=2∠DBC,
∵∠C=2∠DBC,
∴∠ABC=∠C,
∴AB=AC,
∵∠A=60°,
∴△ABC是等边三角形;
(2)解:如图2,截取BE=AB,连接DE,在△ABD与△EBD中,$\left\{\begin{array}{l}{AB=BE}\\{∠ABD=∠EBD}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△EBD,
∴∠A=∠DEB,AD=ED,
∵∠A=2∠C,
∴∠DEB=2∠C,
∵∠DEB=∠C=∠EDB,
∴∠C+∠EDB=2∠C,
∴∠C=∠EDB,
∴ED=EC,
∵AB=4.8,
∴CE=BC-BE=3.2,
∴AD=DE=CE=3.2;
(3)解:过B作BF平分∠DBC交AC于F,
∵BD平分∠ABC,
∴$∠ABD=∠CBD=\frac{1}{2}∠ABC$,
即∠ABC=2∠ABD=2∠CBD,
∵∠ABC=2∠ACB,
∴∠ACB=∠ABD=∠CBD,
∵OC平分∠ACB,BF平分∠DBC,
∴∠1=∠3=$\frac{1}{2}$∠DBC,∠4=∠2=$\frac{1}{2}$∠ACB,
∴∠1=∠2=∠3=∠4,
在△OBC与△FCB中,$\left\{\begin{array}{l}{∠DBC=∠ACB}\\{BC=CB}\\{∠2=∠1}\end{array}\right.$,
∴△OBC≌△FCB,
∴OC=BF,
∵AB=OC,
∴BF=AB,
∵∠ABF=∠ABD+∠3,∠AFB=∠ACB+∠1,
∵∠ABD=∠ACB,∠1=∠3,
∴∠ABF=∠AFB,
∴AB=AF,
∴AB=BF=AF,
∴△ABF为等边三角形,
∴∠A=60°;
(4)延长BD,在BD延长线上确定一点M,使作CM=AB,如图:
故答案为:等边三角形;3.2.
点评 本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的判定还想着,角平分线的定义,三角形的外角的性质,熟练掌握全等三角形的性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | (4,-3) | B. | (3,4) | C. | (-3,-4) | D. | (4,3) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com