精英家教网 > 初中数学 > 题目详情
如图:在⊙则⊙的周长是           。   
根据圆周角定理,得∠A=∠BDC=60°,从而判断△ABC是等边三角形,再根据等边三角形的性质求得其外接圆的直径,从而求得其周长.

解:连接OC,作OE⊥AC于E.
∵∠ACB=∠BDC=60°,
∴∠A=∠BDC=60°,
∴△ABC是等边三角形,
∴∠OCE=30°,CE=AC=(垂径定理),
∴OC==2,
则⊙O的周长是4π.
故答案为4π.
此题考查了圆周角定理、等边三角形的判定及性质.
注意:等边三角形的外心和内心重合,是它的三边垂直平分线的交点.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,第(1)题7分,第(2)题5分)
如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形铁皮上剪下一个圆和扇形(圆与扇形外切,且与正方形的边相切),
使之恰好围成如图所示的一个圆锥模型,设圆半径为,扇形半径为R,则R与的关系是  (   )
A.R=2rB.R="4r"
C.R=2πrD.R=4πr

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,
连接BD,过点E作EM∥BD,交BA的延长线于点M.

(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•攀枝花)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,OM=,则sin∠CBD的值等于(  )

A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011年青海,4,2分)如图1所示,⊙O的两条切线PA和PB相交于点P,与⊙O相切于A、B两点,C是⊙O上的一点,若∠P=700,则∠ACB=         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•常德)已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,
(1)如图1,若△ABC是等腰三角形,且AC=BC,在上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;
(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·丹东)已知:线段AB=3.5cm,⊙A和⊙B的半径分别是1.5cm和4cm,则⊙A和⊙B的位置关系是____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为【   】
A.4B.6C.3或6D.4或6

查看答案和解析>>

同步练习册答案