【题目】在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.
(1)求点B的坐标.
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
【答案】(1)B(﹣6,﹣3);(2)四边形MBNO的面积不变;是定值9;(3)∠CFE=2∠D.
【解析】
(1)根据题意可得a=﹣6,c=﹣3,则可求A点,C点,B点坐标;(2)设M、N同时出发的时间为t,则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.即面积是定值,其值为9;(3)根据三角形内角和定理和三角形外角等于不相邻的两个内角的和,可求∠CFE与∠D的数量关系.
解:(1)∵(a+6)2+=0,
∴a=﹣6,c=﹣3
∴A(﹣6,0),C(0,﹣3)
∵四边形OABC是矩形
∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6
∴B(﹣6,﹣3)
(2)四边形MBNO的面积不变.
设M、N同时出发的时间为t,
则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.
∴在运动过程中面积不变.是定值9
(3)∠CFE=2∠D.
理由如下:如图
∵∠CBE=∠CEB
∴∠ECB=180°﹣2∠BEC
∵CD平分∠ECF
∴∠DCE=∠DCF
∵AF∥BC
∴∠F=180°﹣∠DCF﹣∠DCE﹣∠BCE=180°﹣2∠DCE﹣(180°﹣2∠BEC)
∴∠F=2∠BEC﹣2∠DCE
∵∠BEC=∠D+∠DCE
∴∠F=2(∠D+∠DCE)﹣2∠DCE
∴∠F=2∠D
科目:初中数学 来源: 题型:
【题目】新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图和统计表(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.捐款户数分组统计表
组别 | 捐款额(x)元 | 户数 |
A | 1≤x<50 | a |
B | 50≤x<100 | 10 |
C | 100≤x<150 |
|
D | 150≤x<200 |
|
E | x≥200 |
|
(1)a= ,本次调查样本的容量是 ;
(2)补全“捐款户数分组统计图1和捐款户数分组统计表”;
(3)若该社区有2000户住户,请根据以上信息,估计全社区捐款不少于150元的户数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校研究性学习小组在学习二次根式 =|a|之后,研究了如下四个问题,其中错误的是( )
A.在a>1的条件下化简代数式a+ 的结果为2a﹣1
B.当a+ 的值恒为定值时,字母a的取值范围是a≤1
C.a+ 的值随a变化而变化,当a取某个数值时,上述代数式的值可以为
D.若 =( )2 , 则字母a必须满足a≥1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与计算:请阅读以下材料,并完成相应的任务. 古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p= ,则三角形的面积S= .
我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S= .
(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于 .
(2)若一个三角形的三边长分别是 ,求这个三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们做个折纸游戏:第一步:在一张矩形纸片的一端,利用图的方法折出一个正方形,然后把纸片展开;第二步:如图,把这个正方形折成两个相等的矩形,再把纸片展开;第三步:折出内侧矩形的对角线,并把它折到图中所示的处;第四步:如图, 展平纸片,按照所得的点折出.则矩形的宽与长的比是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2:若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.
(3)若∠ABM=∠ABF, ∠CDM=∠CDF, 设∠E=m°,直接用含有n、m°的代数式写出∠M= (不写过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.已知在平面直角坐标系中.点 A(0,m),点 B(n,0),D(2m,n),且 m、n 满足(m﹣2)2+=0,将线段AB向左平移,使点B与点 O重合,点C与点A对应.
(1)求点C、D的坐标;
(2)连接CD,动点P从点O出发,以每秒1个单位的速度,沿射线OB方向运动,设点P运动时间为t秒,是否存在某一时刻,使 SPCD=4SAOB,若存在,请求出t值,并写出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com