精英家教网 > 初中数学 > 题目详情
如图,是腰的垂直平分线,的度数是        
15°.

试题分析:已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.
试题解析:∵∠A=50°,AB=AC,
∴∠ABC=∠ACB=(180°-∠A)=65°
又∵DE垂直且平分AB,
∴DB=AD,
∴∠ABD=∠A=50°,
∴∠DBC=∠ABC-∠ABD=65°-50°=15°.即∠DBC的度数是15°.
考点: 1.线段垂直平分线的性质;2.等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图所示,在△ABC中,∠B=90º,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,已知AB=BC=AC=4cm,于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s,点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为t(s),

(1)求t为何值时,
(2)当时,求证:AD平分△PQD的面积;
(3)当时,求△PQD面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.

(1)操作发现(4分)
如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填空:

线段DE与AC的位置关系是         
设△BDC的面积为,△AEC的面积为。则的数量关系是      
(2)猜想论证(4分)
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中的数量关系仍然成立,并尝试分别作出了△BDC,△AEC中边上的高,请你证明小明的猜想。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.

(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;
(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(   )
A.7㎝B.9㎝C.12㎝D.12㎝或者9㎝

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC与A′B′C′关于直线l对称,则∠B的度数为(  )
A.50°B.30°
C.100°D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, 已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列长度的三条线段,不能组成三角形的是 (  )。
A.3,8,4 B.4,9,6
C.15,20,8D.9,15,8

查看答案和解析>>

同步练习册答案