精英家教网 > 初中数学 > 题目详情

已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是数学公式上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)若AB=8cm,AE=6cm,求△DAF的面积.

(1)证明:连接OD.
∵DE是⊙O的切线,
∴OD⊥DE.
又∵DE∥BC,
∴OD⊥BC.
=
∴∠BAD=∠EAD
∵∠BDA=∠BCA,DE∥BC,
∴∠BDA=∠DEA
∴△ABD∽△ADE;

(2)解:由(1)得=,即AD2=AB•AE=8×6=48
由∠ABC=45°,AD⊥AF可推得△ADF为等腰直角三角形.
则S△ADF=AD2=×48=24cm2
分析:(1)连接OD,根据切线的性质可以得到OD⊥DE,利用垂径定理以及圆周角定理可以证得:∠BAD=∠EAD,然后利用平行线的性质,即可证得∠BDA=∠DEA,利用两个角对应相等的两个三角形相似即可证得;
(2)易证:△ADF为等腰直角三角形,利用三角形的面积公式求解.
点评:本题考查了相似三角形的判定与性质,切线的性质定理,正确作出辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角.
求证:PD2=AD•HD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,锐角三角形ABC内接于⊙O,∠ABC=45°;点D是
BC
上的一点,过精英家教网点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)记△DAF、△BAE的面积分别为S△DAF、S△BAE,求证:S△DAF>S△BAE

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是
BC
上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)若AB=8cm,AE=6cm,求△DAF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
求证:OA平分∠BAC.

查看答案和解析>>

同步练习册答案