(1)解:理由是:∵直线l∥BC,
∴∠OEC=∠ECB,
∵CE平分∠ACB,
∴∠OCE=∠BCE,
∴∠OEC=∠OCE,
∴OE=OC,
同理OF=OC,
∴OE=OF.
(2)解:O在AC的中点上时,四边形AECF是矩形,
理由是:∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,
∵OE=OF=OC=OA,
∴AC=EF,
∴平行四边形AECF是矩形.
(3)解:当△ACB满足∠ACB=90°时,矩形AECF是正方形,
理由是:∵直线l∥BC,
∴∠AOE=∠ACB,
∵∠ACB=90°,
∴∠AOE=90°,
∴AC⊥EF,
∵四边形AECF是矩形,
∴矩形AECF是正方形.
分析:(1)根据平行线性质和角平分线定义推出∠OEC=∠OCE,∠OFC=∠OCF,根据等腰三角形的判定推出OE=OC,OF=OC即可;
(2)根据平行四边形的判定得出平行四边形AECF,根据对角线相等的平行四边形是矩形推出即可;
(3)根据(2)得出四边形是平行四边形,也是矩形,只要是得到是菱形的条件就行,即得出对角线互相垂直,由∠AOE=90°和矩形即可得出答案.
点评:本题综合考查了平行四边形的性质和判定,矩形的判定,正方形的判定,平行线的性质,角平分线定义等知识点的应用,题型较好,综合性比较强,难度也适中.