精英家教网 > 初中数学 > 题目详情
如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD的四个顶点在平行直线上,∠BAD=90°且AB=2AD,DC⊥l4,则四边形ABCD的面积是
9
9
分析:首先延长DC交l5于点F,延长CD交l1于点E,作点B作BH⊥l1于点H,连接BD,易证得△BAH∽△ADE,然后由相似三角形的对应边成比例,求得AH,AE的长,由勾股定理求得AD与AB的长,然后由S四边形ABCD=S△ABD+S△BCD,即可求得答案.
解答:解:延长DC交l5于点F,延长CD交l1于点E,作点B作BH⊥l1于点H,连接BD,
∵DC⊥l4,l1∥l2∥l3∥l4∥l5
∴DC⊥l1,DC⊥l5
∴∠BHA=∠DEA=90°,
∴∠ABH+∠BAH=90°,
∵∠BAD=90°,
∴∠BAH+∠DAE=90°,
∴∠ABH=∠DAE,
∴△BAH∽△ADE,
AB
AD
=
BH
AE
=
AH
DE

∵AB=2AD,BH=4,DE=1,
∴AE=2,AH=2,
∴BF=HE=AH+AE=2+2=4,
在Rt△ADE中,AD=
AE2+DE2
=
5

∴AB=2AD=2
5

∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×2
5
×
5
+
1
2
×2×4=9.
故答案为:9.
点评:此题考查了相似三角形的判定与性质、勾股定理以及四边形的面积问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,已知直线l1,l2,l3相交于点O,∠1=35°,∠2=25°,则∠3等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郯城县一模)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•黔南州)如图,已知直线l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知直线l1∥l2,且l3、l4和l1、l2分别交于点A、B和点C、D,点P在AB上,设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之间的关系,并说明你的结论的正确性.
(2)若点P在A、B两点之间运动时(点P和A、B不重合),∠1、∠2、∠3 之间的关系
不会
不会
发生变化(填会或不会)
(3)如果点P在A、B两点外侧运动时,(点P和A、B不重合)
①当点P在射线AM上时,猜想∠1、∠2、∠3之间的关系为
∠2=∠3-∠1
∠2=∠3-∠1

②当点P在射线BN上时,猜想∠1、∠2、∠3之间的关系为
∠3=∠1-∠2
∠3=∠1-∠2
(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案