精英家教网 > 初中数学 > 题目详情

【题目】学校到- -家文具店给九年级学生购买考试用文具包,该文具店规一次购买个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款元;若再多买个就可享受八折优惠,并且同样只需付款元.求该校九年级学生的总人数. (列分式方程解答)

【答案】该校九年级学生的总人数是.

【解析】

首先设九年级学生有x人,根据给九年级学生每人购买一个,不能享受8折优惠,需付款2520可得每个文具包的花费是元,根据若多买70个,就可享受8折优惠,同样只需付款2520可得每个文具包的花费是元,根据题意可得方程即可

:设该校九年级学生的总人数是人,

由题意得,

解得:

经检验: 是原分式方程的解,且符合题意.

:该校九年级学生的总人数是人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,,∠,点的中点,点的边上,若为等腰三角形,则的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为_________cm

(第16题图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探究发现)

如图1,在△ABC中,点P是内角∠ABC和外角∠ACD的角平分线的交点,试猜想∠P与∠A之间的数量关系,并证明你的猜想.

(迁移拓展)

如图2,在△ABC中,点P是内角∠ABC和外角∠ACD的n等分线的交点,即∠PBC=∠ABC,∠PCD=∠ACD,

试猜想∠P与∠A之间的数量关系,并证明你的猜想.

(应用创新)

已知,如图3,AD、BE相交于点C,∠ABC、∠CDE、∠ACE的角平分线交于点P,∠A=35°,∠E=25°,则∠BPD=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,已知中,的顶点分别在边上,当点在边上运动时,随之在上运动,的形状始终保持不变,在运动的过程中,点到点的最小距离为( )

A. 5 B. 7 C. 12 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.

(1)点D在边AB上时,证明:AB=FA+BD;

(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人写字时眼睛和笔端的距离超过30cm时则符合保护视力的要求.图1是一位同学的坐姿,把她的眼睛B、肘关节C和笔端A的位置关系抽象成图2的△ABC,BC=30cm,AC=22cm,∠ACB=530,她的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin530≈0.8,cos530≈0.6,tan530≈1.3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点CCF平行于BAPQ于点F,连接AF

(1)求证:AED≌△CFD

(2)求证:四边形AECF是菱形.

(3)若AD=3,AE=5,则菱形AECF的面积是多少?

查看答案和解析>>

同步练习册答案