A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据点D是AB的中点,得到AD=$\frac{AB}{2}$,由于AB=2BC,于是得到AD=BC,证得Rt△AED≌Rt△BAC,得到∠E=∠CAB,DE=AC,故①正确;由∠E+∠EDA=90°,得到∠FAD+∠EDA=90°,即可得到DE⊥AC,故②正确;根据同角的余角相等得到∠EAF=∠ADE,故③正确;根据BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,故④错误.
解答 解:点D是AB的中点,则AD=$\frac{AB}{2}$,
∵AB=2BC,
∴AD=BC,
∵EA⊥AB,CB⊥AB,
∴∠B=∠EAB=90°,
在△AED与△BAC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠DAE=∠CBA}\\{AE=AB}\end{array}\right.$,
∴△AED≌△BAC,
∴∠E=∠CAB,DE=AC,
∴①正确;
∵∠E+∠EDA=90°,
∴∠FAD+∠EDA=90°,
∴∠AFD=180°-(∠FAD+∠EDA)=90°,
∴DE⊥AC,
∴②正确;
∵∠EAF与∠ADE都是∠E的余角,
∴∠EAF=∠ADE,
∴③正确;
∵BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,
∴④错误;
故选C.
点评 本题考查了:①全等三角形的判定和性质;②三角形内角和定理;③直角三角形的性质,熟记这些定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com