精英家教网 > 初中数学 > 题目详情
5.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,以下判断正确的个数有(  )
①DE=AC;②DE⊥AC;③∠EAF=∠ADE;④∠CAB=30°.
A.1个B.2个C.3个D.4个

分析 根据点D是AB的中点,得到AD=$\frac{AB}{2}$,由于AB=2BC,于是得到AD=BC,证得Rt△AED≌Rt△BAC,得到∠E=∠CAB,DE=AC,故①正确;由∠E+∠EDA=90°,得到∠FAD+∠EDA=90°,即可得到DE⊥AC,故②正确;根据同角的余角相等得到∠EAF=∠ADE,故③正确;根据BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,故④错误.

解答 解:点D是AB的中点,则AD=$\frac{AB}{2}$,
∵AB=2BC
∴AD=BC,
∵EA⊥AB,CB⊥AB,
∴∠B=∠EAB=90°,
在△AED与△BAC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠DAE=∠CBA}\\{AE=AB}\end{array}\right.$,
∴△AED≌△BAC,
∴∠E=∠CAB,DE=AC,
∴①正确;
∵∠E+∠EDA=90°,
∴∠FAD+∠EDA=90°,
∴∠AFD=180°-(∠FAD+∠EDA)=90°,
∴DE⊥AC,
∴②正确;
∵∠EAF与∠ADE都是∠E的余角,
∴∠EAF=∠ADE,
∴③正确;
∵BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,
∴④错误;
故选C.

点评 本题考查了:①全等三角形的判定和性质;②三角形内角和定理;③直角三角形的性质,熟记这些定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.计算:
(1)$\sqrt{0.25}$-$\root{3}{-8}$+$\sqrt{1-\frac{7}{16}}$
(2)|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{3}$-2|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,△ABC中,∠C=90°,∠BAC=60°,AD是角平分线,若BD=6,则CD等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知直线a∥b,∠1=40°,∠2=100°,则∠3等于(  )
A.40°B.60°C.80°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知△ABC(AB>AC),在∠BAC内部的点P到∠BAC两边的距离相等,且PB=PC.
(1)利用尺规作图,确定符合条件的P点(保留作图痕迹,不必写出作法);
(2)过点P作AC的垂线,垂足D在AC延长线上,求证:AB-AC=2CD;
(3)当∠BAC=90°时,判断△PBC的形状,并证明你的结论;
(4)当∠BAC=90°时,设BP=m,AP=n,直接写出△ABC的周长和面积(用含m、n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y=x+1与x轴、y轴分别相交于点A、B,过点A的直线y=$\frac{1}{3}$x+b与y轴相交于点C.
(1)求直线AC的解析式;
(2)求直线AC关于直线AB对称的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在下列网格中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4,
(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向选择90°后的图形△AB1C1
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在正方形网格上有一个△DEF.
(1)作△DEF关于直线HG的轴对称图形△ABC(不写作法);
(2)作EF边上的高(不写作法);
(3)若网格上的最小正方形边长为1,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.小李从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面四条信息:①b2-4ac>0;②c>1;③ab>0;④a-b+c<0.你认为其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案