精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AMBN,A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AMC、D.

(1)求∠CBD的度数;

(2)当点P运动时,那么∠APB:ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;

(3)当点P运动到使∠ACB=ABD时,求∠ABC的度数.

【答案】(1)CBD=50°;(2)不变,∠APB:ADB=2:1;(3)ABC=25°.

【解析】

(1)由平行线的性质可求得∠ABN,再根据角平分线的定义和整体思想可求得∠CBD;

(2)由平行线的性质可得∠APB=∠PBN,∠ADB=∠DBN,再由角平分线的定义可求得结论;

(3)由平行线的性质可得到∠ACB=∠CBN=60°+∠DBN,结合条件可得到∠DBN=∠ABC,且∠ABC+∠DBN=60°,可求得∠ABC的度数.

(1)AMBN,

∴∠ABN+A=180°,

∴∠ABN=180°﹣80°=100°,

∴∠ABP+PBN=100°,

BC平分∠ABP,BD平分∠PBN,

∴∠ABP=2CBP,PBN=2DBP,

2CBP+2DBP=100°,

∴∠CBD=CBP+DBP=50°;

(2)不变,∠APB:ADB=2:1.

AMBN,

∴∠APB=PBN,ADB=DBN,

BD平分∠PBN,

∴∠PBN=2DBN,

∴∠APB:ADB=2:1;

(3)AMBN,

∴∠ACB=CBN,

当∠ACB=ABD时,则有∠CBN=ABD,

∴∠ABC+CBD=CBD+DBN,

∴∠ABC=DBN,

由(1)可知∠ABN=100°,CBD=50°,

∴∠ABC+DBN=50°,

∴∠ABC=25°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对下列代数式作出解释,其中不正确的是(

A. a-b:今年小明b岁,小明的爸爸a岁,小明比他爸爸小(a-b)岁

B. a-b:今年小明b岁,小明的爸爸a岁,则小明出生时,他爸爸为(a-b)岁

C. ab:长方形的长为acm,宽为bcm,长方形的面积为ab

D. ab:三角形的一边长为acm,这边上的高为bcm,此三角形的面积为ab

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.5元,花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同.粽子与咸鸭蛋的价格各是多少?

【答案】粽子和咸鸭蛋的单价分别为每个3.5元、2元

【解析】试题分析:设咸鸭蛋的价格为x元,则粽子的价格为(1.5+x)元,根据花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.

试题解析:

解:设咸鸭蛋的价格为x元,则粽子的价格为(1.5+x)元,

根据题意得:

去分母得:35x=30+20x

解得:x=2,

经检验x=2是分式方程的解,且符合题意,

1.5+x=1.5+2=3.5(元),

故咸鸭蛋的价格为2元,粽子的价格为3.5元.

点睛:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.

型】解答
束】
24

【题目】某书店为了迎接“读书节”制定了活动计划,陈经理查看计划书发现:A类图书的标价是B类图书标价的1.5倍,若顾客用1080元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少20.请求出AB两类图书的标价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于不等式组 下列说法正确的是(  )
A.此不等式组无解
B.此不等式组有7个整数解
C.此不等式组的负整数解是﹣3,﹣2,﹣1
D.此不等式组的解集是﹣ <x≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD的对角线ACBD交于点OAE平分BAD交BC于点EADC=600AB=BC连接OE下列 结论:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的个数有( )

A1个 B2个 C3个 D4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.

(1)求证:PF平分∠BFD.
(2)若tan∠FBC= ,DF= ,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.

(1)求证:△AEF≌△DEB;

(2)证明四边形ADCF是菱形;

(3)若AC=3,AB=4,求菱形ADCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1和∠2互补,∠C=EDF.

(1)判断DFEC的关系为   

(2)试判断DEBC的关系,并说明理由.

(3)试判断∠DEC与∠DFC的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠B=AFEEA是∠BEF的平分线,求证:

(1)ABE≌△AFE

(2)FAD=CDE.

查看答案和解析>>

同步练习册答案