精英家教网 > 初中数学 > 题目详情

如图,直线x轴,y轴分别交于B,C两点,抛物线经过B,C两点,点A是抛物线与x轴的另一个交点。

(1)求B、C两点坐标;

(2)求此抛物线的函数解析式;

(3)在抛物线上是否存在点P,使,若存在,求出P点坐标,若不存在,请说明理由。

 


解:(1) 写出B点坐标(3,0)C坐标(0,3)  (写正确1个2分,共4分)

(2) 求出b=2,c=3(写正确1个1分,共2分)

   求出解析式为(1分)

(3)求出A点坐标(—1,0)(1分)

    求出点的坐标(2,3) (2分需要过程说明,没有过程得1分)

  求出点的坐标(,—3)(2分需要过程说明,没有过程得1分)

求出点的坐标(,—3)(2分需要过程说明,没有过程得1分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1
请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
 
(填“平行”或“垂直”);
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴交于A、B两点,且OA=OB=1,点P是反比例函数y=
1
2x
图象在第一象限的分支上的任意一点,P点坐标为(a,b),由点P分别向x轴,y轴作垂线PM、PN,垂足分别为M、N;PM、PN分别与直线交于点E,点F.
(1)设交点E、F都在线段AB上,分别求出点E、点F的坐标;(用含a的代数式表示)
(2)△AOF与△BOE是否一定相似?如果一定相似,请予以证明;如果不一定相似或一定不相似,请简短说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角和它的大小,并证明你的结论;
(4)在双曲线y=
1
2x
上是否存在点P,使点P到直线AB的距离最短的点,若存在,请求出点P的坐标及最短距离;若不存在,说明理由
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,直线与y轴的交点是(0,-3),则当x<0时,(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1.请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
垂直
垂直
(填“平行”或“垂直”)
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
-1
-1

查看答案和解析>>

科目:初中数学 来源:2011届宁夏银川市初三上学期期末数学卷 题型:解答题

如图①,直线与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.

(1)写出A、B、C三点的坐标,并求抛物线的解析式;(5分)
(2) 当△BDE是等腰三角形时,直接写出此时点E的坐标;(3分)
(3)连结PC、PB,△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由。(3分)

查看答案和解析>>

同步练习册答案