精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2+(2k+1)x+k2+2=0有两个相等的实数根,试判断直线y=(2k-3)x-4k+12能否通过点A(-2,4),并说明理由.
分析:方程x2+(2k+1)x+k2+2=0有两个相等的实数根,则△=0,据此算出k的值,得到直线解析式,看当x=-2时,y是否等于4.
解答:解:∵x2+(2k+1)x+k2+2=0有两个相等的实数根
∴△=b2-4ac=0
∴(2k+1)2-4(k2+2)=0,即4k-7=0,
∴k=
7
4

∴2k-3=2×
7
4
-3=
1
2
,-4k+12=-4×
7
4
+12=-7+12=5,
∴直线方程y=
1
2
x+5,
当x=-2时,y=
1
2
×(-2)+5=4,
∴A(-2,4)在直线y=
1
2
x+5上.
点评:本题用的知识点为:一元二次方程有两个相等的实数根,说明根的判别式为0,在直线上的各点的坐标一定适合这条直线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案