精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使E精英家教网F=AE,连接AF、BE和CF.
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;
(2)判断四边形ABDF是怎样的四边形,并说明理由;
(3)若AB=6,BD=2DC,求四边形ABEF的面积.
分析:(1)从图上及已知条件容易看出△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF.判定两个三角形全等时,必须有边的参与,所以此题的关键是找出相等的边.
(2)由(1)的结论容易证明AB∥DF,BD∥AF,两组对边分别平行的四边形是平行四边形.
(3)EF∥AB,EF≠AB,四边形ABEF是梯形,只要求出此梯形的面积即可.
解答:精英家教网解:(1)(选证一)△BDE≌△FEC.
证明:∵△ABC是等边三角形,
∴BC=AC,∠ACB=60度.
∵CD=CE,
∴△EDC是等边三角形.
∴DE=EC,∠CDE=∠DEC=60°
∴∠BDE=∠FEC=120度.
又∵EF=AE,
∴BD=FE.
∴△BDE≌△FEC.
(选证二)△BCE≌△FDC.
证明:∵△ABC是等边三角形,
∴BC=AC,∠ACB=60度.
又∵CD=CE,
∴△EDC是等边三角形.
∴∠BCE=∠FDC=60°,DE=CE.
∵EF=AE,
∴EF+DE=AE+CE.
∴FD=AC=BC.
∴△BCE≌△FDC.
(选证三)△ABE≌△ACF.
证明:∵△ABC是等边三角形,
∴AB=AC,∠ACB=∠BAC=60度.
∵CD=CE,∴△EDC是等边三角形.
∴∠AEF=∠CED=60度.
∵EF=AE,△AEF是等边三角形.
∴AE=AF,∠EAF=60度.
∴△ABE≌△ACF.

(2)四边形ABDF是平行四边形.
理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形.
∴∠CDE=∠ABC=∠EFA=60度.
∴AB∥DF,BD∥AF.
∴四边形ABDF是平行四边形.

(3)由(2)知,四边形ABDF是平行四边形.
∴EF∥AB,EF≠AB.
∴四边形ABEF是梯形.
过E作EG⊥AB于G,则EG=2
3

∴S四边形ABEF=
1
2
EG•(AB+EF)=
1
2
×2
3
×
(6+4)=10
3
点评:此题考查了全等三角形的判定,平行四边形的判定,及梯形面积的求解,用到的知识点比较多,较复杂.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案