【题目】请阅读下述材料:
下述形式的繁分数叫做有限连分数,其中n是自然数,a0是整数,a1,a2,a3,…,an是正整数:
其中称为部分商。
按照以下方式可将任何一个分数转化为连分数的形式:,则;考虑的倒数,有,从而;再考虑的倒数,有,于是得到a的连分数展开式,它有4个部分商:3,1,3,3;
可利用连分数来求二元一次不定方程的特殊解,以为例,首先将写成连分数的形式,如上所示;其次,数部分商的个数,本例是偶数个部分商(奇数情况请见下例);最后计算倒数第二个渐近分数,从而是一个特解。
考虑不定方程,先将写成连分数的形式:。
注意到此连分数有奇数个部分商,将之改写为偶数个部分商的形式:
计算倒数第二个渐近分数:,所以是的一个特解。
对于分式,有类似的连分式的概念,利用将分数展开为连分数的方法,可以将分式展开为连分式。例如的连分式展开式如下,它有3个部分商: ;
再例如,,它有4个部分商:1,。
请阅读上述材料,利用所讲述的方法,解决下述两个问题
(1)找出两个关于x的多项式p和q,使得。
(2)找出两个关于x的多项式u和v,使得。
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3ax2+2bx+c,
(1)若a=3k,b=5k,c=k+1,试说明此类函数图象都具有的性质;
(2)若a=, c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在正方形ABCD边AD上,连接PB,过点B作一条射线与边DC的延长线交于点 Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ,若PQ=PB+PD+3,则△PAB的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:根据《中国铁路中长期发展规划》,预计到2020年底,我国建设城际轨道交通的公里数是客运专线的2倍。其中建设城际轨道交通约投入8000亿元,客运专线约投入3500亿元。据了解,建设每公里城际轨道交通与客运专线共需1.5亿元。预计到2020年底,我国将建设城际轨道交通和客运专线分别约多少公里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.
(1)求证:AM=QN.
(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.
(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通过数据分析,列表如下:
(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.
(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;
(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC中点,过点D的直线GF交AC于F,交AC的平行线BG于G,DE⊥DF,交AB于E,连接BG,请你判断BE+CF与EF的大小关系,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com