精英家教网 > 初中数学 > 题目详情
3.某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.
(3)“十•一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十•一”假期该纪念品打八折后售价为多少?

分析 (1)根据函数图象中两个点的坐标,利用待定系数法求解可得;
(2)根据“总利润=单件利润×销售量”列出函数解析,利用二次函数的性质可得最值情况;
(3)根据(2)中相等关系列出函数解析式,由二次函数的性质求解可得.

解答 解:(1)设y=kx+b,
根据函数图象可得:$\left\{\begin{array}{l}{10k+b=150}\\{20k+b=100}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-5}\\{b=200}\end{array}\right.$,
∴y=-5x+200;

(2)设每天获利w元,
则w=(x-12)y=-5x2+260x-2400=-5(x-26)2+980,
∴当x=26时,w最大,最大利润为980元;

(3)设“十一”假期每天利润为P元,
则P=(0.8x-12)•y(1+200%)=-12x2+660x-7200=-12(x-$\frac{55}{2}$)2+1875,
∴当x=$\frac{55}{2}$时,P最大,
此时售价为0.8×$\frac{55}{2}$=22,
答:“十•一”假期该纪念品打八折后售价为22元.

点评 本题主要考查二次函数的应用和待定系数法求一次函数的解析式,熟练掌握销售问题中关于总利润的相等关系和二次函数的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.已知⊙O的半径为4,点P与圆心O的距离为d,且方程x2-4x+d=0有实数根,则点P在⊙O内或上(填位置关系)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,DE⊥BC于E,连接BD,M在AB上,AM=AD,MN⊥BD交BC于点N,若MN=5,AE=5$\sqrt{2}$,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,⊙O为锐角三角形ABC的外接圆,若∠BAO=18°,则∠C的度数为72°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.计算(-$\frac{5}{13}$)100×(-$\frac{13}{5}$)101所得结果为(  )
A.1B.-1C.-2$\frac{3}{5}$D.-$\frac{5}{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某商场经营A种品牌的玩具,购进时间的单价是30元,但据市场调查,在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量;
(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付他库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC的三个顶点的坐标分别是A(-2,-4),B(0,-4),C(1,-1).
(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1
(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2
(3)在(2)的条件下,计算点A所经过的路径的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知直线y=2x-5与x轴和y轴分别交于点A和点B,抛物线y=-x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.
(1)如图,当点M与点A重合时,求抛物线的解析式;
(2)在(1)的条件下,求点N的坐标和线段MN的长;
(3)抛物线y=-x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图.在正方形ABCD中,点P是BC延长线上一点,BQ⊥PD于点Q,QN⊥BD于点N,连接AN.若S△DMQ=$\frac{1}{8}$DM2,AB=4,则AN的长为$\sqrt{10}$.

查看答案和解析>>

同步练习册答案