A. | 6 | B. | 9 | C. | 10 | D. | 12 |
分析 过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=4,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.
解答 解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,
∵AB∥x轴,
∴AF⊥y轴,
∴四边形AFOD是矩形,四边形OEBF是矩形,
∴AF=OD,BF=OE,
∴AB=DE,
∵点A在双曲线y=$\frac{4}{x}$上,
∴S矩形AFOD=4,
同理S矩形OEBF=k,
∵AB∥OD,
∴$\frac{OD}{AB}$=$\frac{CD}{AC}$=$\frac{1}{2}$,
∴AB=2OD,
∴DE=2OD,
∴S矩形OEBF=3S矩形AFOD=12,
∴k=12.
故选D.
点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | y<-1 | B. | y≤-1 | C. | y≤-1或y>0 | D. | y<-1或y≥0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3$\sqrt{3}$cm3 | B. | 6$\sqrt{3}$cm3 | C. | 6cm3 | D. | 12cm3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 方差是21 | B. | 平均数是26 | C. | 众数是22 | D. | 中位数是24 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
研发组 | 管理组 | 操作组 | |
日工资(元) | 200 | 180 | 160 |
人数(人) | 3 | 4 | 5 |
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com