精英家教网 > 初中数学 > 题目详情
24、如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
分析:(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,得;EB=EC.由等边对等角得∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余.∴∠1=∠2.∴AE=CE.又∵AF=CE,∴△ACE和△EFA都是等腰三角形.∵FD⊥BC,AC⊥BC,∴AC∥FE.∴∠1=∠5.∴∠AEC=∠EAF,∴AF∥CE.∴四边形ACEF是平行四边形.
(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.
(3)当四边形ACEF是矩形时,有∠2=90°,而∠2与∠3互余.∠3≠0°,∴∠2≠90°.∴四边形ACEF不可能是矩形.
解答:解:(1)∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.

(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴∠AEC=60°.
∴AC=EC.
∴平行四边形ACEF是菱形.

(3)四边形ACEF不可能是是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
点评:本题利用了:(1)中垂线的性质,(2)等边对等角和等角对等边,(3)直角三角形的性质,(4)平行四边形和判定和性质,(5)一组邻边相等的平行四边形是菱形,(6)矩形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案