精英家教网 > 初中数学 > 题目详情
(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

【答案】分析:(1)由于PC,PD都是切线,那么三角形ACP和PDB就都是直角三角形,那么我们可以用勾股定理来表示出PC2和PD2,由于PC=PD,那么可得出关于CA2、AP2、PB2、BD2的比例关系式,已知了AC,BD,AB的值如果我们用PB表示出AP,就能在这个比例关系式中求出PB的值;
(2)方法同(1)类似只不过相等改成了PC2+PD2=4,可用(1)的方法先求出PB的长,然后根据PB的取值范围来判断有几个符合条件的值;
(3)要两个三角形相似,已知的条件有∠ACP=∠BDP=90°,AC:BD=2:1,那么只要让PC:PD=2:1,就能构成三角形相似判定中两组对应边对应成比例且夹角相等的条件,两三角形相似后∠CPA=∠CPB,如果延长CP那么CP延长线与PD组成的角中,PB正好是角平分线,根据角平分线的点到角两边的距离相等,可得出B到CP延长线的距离等于半径BD的长,因此CP与⊙B也相切.
解答:解:(1)∵PC切⊙A点于C,
∴PC⊥AC,
PC2=PA2-AC2
同理PD2=PB2-BD2
∵PC=PD,
∴PA2-AC2=PB2-BD2
设PB=x,PA=4-x代入得x2-12=(4-x)2-22
解得x=,1<<2,
即PB的长为(PA长为>2),

(2)假定存在一点P使PC2+PD2=4,设PB=x,
则PD2=x2-1 PC2=(4-x)2-22
代入条件得(4-x)2-22+x2-1=4,
代简得2x2-8x+7=0解得x=2±
∵P在两圆间的圆外部分,
∴1<PB<2即1<x<2,
∴满足条件的P点只有一个,这时PB=2-

(3)当PC:PD=2:1或PB=时,也有△PCA∽△PDB,
这时,在△PCA与△PDB中
∠C=∠D=90°,
∴△PCA∽△PDB,
∴∠BPD=∠APC=∠BPE(E在CP的延长线上),
∴B点在∠DPE的角平分线上,B到PD与PE的距离相等,
∵⊙B与PD相切,
∴⊙B也与CP的延长线PE相切.
点评:本题主要考查了切线性质的判定以及相似三角形的判定,具有一定的综合性,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:填空题

(2003•舟山)如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,则这条抛物线的关系式为   

查看答案和解析>>

科目:初中数学 来源:2003年浙江省舟山市中考数学试卷(解析版) 题型:填空题

(2003•舟山)如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,则这条抛物线的关系式为   

查看答案和解析>>

科目:初中数学 来源:2003年浙江省舟山市中考数学试卷(解析版) 题型:选择题

(2003•舟山)如图是人字型屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点,如果接工身边只有检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接点是( )

A.AB和BC焊接点B
B.AB和AC焊接点A
C.AB和AD焊接点A
D.AD和BC焊接点D

查看答案和解析>>

科目:初中数学 来源:2003年浙江省舟山市中考数学试卷(解析版) 题型:选择题

(2003•舟山)如图,用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖的长和宽分别是( )

A.48cm,12cm
B.48cm,16cm
C.44cm,16cm
D.45cm,15cm

查看答案和解析>>

同步练习册答案