精英家教网 > 初中数学 > 题目详情

【题目】a 和5a大小比较是(
A. a 小于5a
B. a 等于5a
C. a 大于5a
D.不能确定

【答案】D
【解析】因为这里a可能是正数还可能是负数,还有可能是0,所不能确定谁大谁小
【考点精析】利用有理数的乘法法则对题目进行判断即可得到答案,需要熟知有理数乘法法则:1、两数相乘,同号为正,异号为负,并把绝对值相乘2、任何数同零相乘都得零3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】因式分解:

(1)m2n-2mnn      (2)x2+3x(x-3)-9.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.

(1)求证:AD⊥BC;
(2)求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100, ①
则S=100+99+98+…+1,②
①+②,得
2S=101+101+101+…+101.
(两式左右两端分别相加,左端等于2s,右端等于100个101的和)
所以2S=100x101,
S= ×100X101=5050 ③
所以1+2+3+…+100=5050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.
请解答下面的问题:
(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+200.
(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:
1+2+3+…+n=
(3)计算:101+102+103+…+2018.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为( )
A.6.5~9.5
B.9.5~12.5
C.8~11
D.5~8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)

(1)填空:BC的长是

(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDDCE80°,则BEF=( )

A. 120° B. 110° C. 100° D. 80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.

(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.

①点B的坐标为( ),BK的长是 ,CK的长是

②求点F的坐标;

③请直接写出抛物线的函数表达式;

(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

同步练习册答案