精英家教网 > 初中数学 > 题目详情
19、如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
分析:要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可.
解答:如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,
求证:DE是⊙O的切线.
证明:连接AD、DO;
∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°.
∵E是AC的中点,
∴DE=AE(直角三角形中斜边中线等于斜边一半),
∴∠EAD=∠EDA.
∵OA=OD,
∴∠DAO=∠ADO,
∴∠EDO=∠EDA+∠ADO=∠EAD+∠DAO=∠CAB=90°.
∴OD⊥DE.
DE是⊙O的切线.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图△ABC中,∠C=90°,AC=6,AB=10,D是BC边的中点,以AD上一点O为圆心的圆与AB,BC都相切,则⊙O的半径为(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图△ABC中,DE∥BC,CD、BE交于点F,若DF=1,CF=3,AD=2,则线段BD的长等于
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠A=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为
69°
69°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠ABC=20°,外角∠ABF的平分线与CA边的延长线交于点D,外角∠EAC的平分线交BC边的延长线于点H,若∠BDA=∠DAB,则∠AHC=(  )度.

查看答案和解析>>

同步练习册答案