精英家教网 > 初中数学 > 题目详情
13.分解因式:-$\frac{1}{3}$x2y2+xy=(-$\frac{1}{3}$xy)(xy-3).

分析 直接提取公因式-$\frac{1}{3}$xy即可,注意符号的变化.

解答 解::-$\frac{1}{3}$x2y2+xy=-$\frac{1}{3}$xy(xy-3),
故答案为:-$\frac{1}{3}$xy.

点评 此题主要考查了提公因式法分解因式,关键是掌握找出公因式的找法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“-”号时,多项式的各项都要变号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,射线PA切⊙O于点A,连接PO.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求$\widehat{AB}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.
(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.化简:(2a24÷3a2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.单项式$\frac{3{x}^{2}{y}^{3}}{5}$的系数是$\frac{3}{5}$,次数是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某一农家计划利用已有的一堵长为7.9m的墙,用篱笆围成一个面积为12m2的矩形园子.现有可用的篱笆总长为11m
(1)若取园子的长、宽都为整数(单位:m),一共有几种围法?
(2)若要使11m长的篱笆恰好用完,应怎样围?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图①,半径为R,圆心角为n°的扇形面积是S扇形=$\frac{nπ{R}^{2}}{360}$,由弧长l=$\frac{nπR}{180}$,得S扇形=$\frac{nπ{R}^{2}}{360}$=$\frac{1}{2}$•$\frac{nπR}{180}$•R=$\frac{1}{2}$lR.通过观察,我们发现S扇形=$\frac{1}{2}$lR类似于S三角形=$\frac{1}{2}$×底×高.
类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分叫做扇环)的面积公式及其应用.
(1)设扇环的面积为S扇环,$\widehat{AB}$的长为l1,$\widehat{CD}$的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=$\frac{1}{2}$×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;
(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如果分式$\frac{{x}^{2}-4}{{x}^{2}-3x+2}$的值为零,那么x等于(  )
A.-2B.2C.-2或2D.1或2

查看答案和解析>>

同步练习册答案