精英家教网 > 初中数学 > 题目详情
3.在四边形ABCD中,AD∥BC,点E在BC边的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.
(1)如图1,求证:AD=BC;
(2)如图2,连接BD、DE,若BD⊥DE,请判定四边形ABCD的形状,并证明.

分析 (1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;
(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=$\frac{1}{2}$BE=BC,即可得出四边形ABCD是菱形.

解答 (1)证明:∵AD∥BC,
∴∠D=∠ECF,
在△ADF和△ECF中,$\left\{\begin{array}{l}{∠D=∠ECF}&{\;}\\{DF=CF}&{\;}\\{∠AFD=∠EFC}&{\;}\end{array}\right.$,
∴△ADF≌△ECF(ASA),
∴AD=CE,
∵CE=BC,
∴AD=BC;
(2)解:四边形ABCD是菱形;理由如下:
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∵BD⊥DE,
∴∠BDE=90°,
∵CE=BC,
∴CD=$\frac{1}{2}$BE=BC,
∴四边形ABCD是菱形.

点评 本题考查了全等三角形的判定与性质、平行线的性质、平行四边形的判定、直角三角形斜边上的中线性质、菱形的判定;证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.若x1,x2是关于x的方程x2+bx+c=0的两实根,且${x_1}^2+3{x_2}^2=3|k|$(k为整数),则称方程x2+bx+c=0为“B系二次方程”,如:x2+2x-3=0,x2+2x-15=0,${x^2}+3x-\frac{27}{4}=0$,${x^2}+x-\frac{15}{4}=0$,x2-2x-3=0,x2-2x-15=0等,都是“B系二次方程”.请问:对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“B系二次方程”,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知函数y=-x2+bx+2b-1的部分图象如图所示,求函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,AB是⊙O的直径,AB=2,分别以A,B为圆心,1为半径画弧与⊙O交于C,E,D,F,则阴影部分的面积是$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.甲、乙两人从相距30千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.△ABC中,l垂直平分AB交AC于P,交AB于Q,△ABC周长为26cm,AQ=4cm,求△PCB的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知|x|=3,|y|=5,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用简便方法计算:
(1)-13×$\frac{2}{3}$-0.34×$\frac{2}{7}$+$\frac{1}{3}$×(-13)-$\frac{5}{7}$×0.34
(2)[(4×8)×25-8]×125
(3)6.868×(-5)+6.868×(-12)+6.868×(+17)
(4)-99$\frac{23}{24}$×18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.现在互联网越来越普及,网上购物的人也越来越多,订购的商品往往通过快递送达.淘宝网上某“四皇冠”级店铺率先与“快乐童年”童装厂取得联系,经营该厂家某种型号的童装.根据第一周的销售记录,该型号童装每天的售价x(元/件)与当日的销售量y(件)的相关数据如下:
每件的销售价x(元/件)200190180170160150140
每天的销售量y(件)8090100110120130140
已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担.
(1)请观察题中的表格,用所学过的一次函数、反比例函数的有关知识,求第一周销售中,y与x的函数关系式;
(2)设第一周每天的赢利为w元,求w关于x的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?
(3)从第二周起,该店铺一直按第(2)中的最大日盈利的售价进行销售.但进入第三周后,网上其他购物店也陆续推出该型号童装,因此第三、四周该店铺每天的售价都比第二周下降了m%,销售量也比第二周下降了0.5m%(m<20);第五周开始,厂家给予该店铺优惠,每件的进价降低了16元;该店铺在维持第三、四周的销售价和销售量的基础上,同时决定每件童装的快递费由买家自付,这样,第五周的赢利相比第二周的赢利增加了2%,请估算整数m的值.

查看答案和解析>>

同步练习册答案