精英家教网 > 初中数学 > 题目详情
(2013•桂林)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=
3
3
分析:根据等腰三角形的性质可知:两腰上的高相等所以AD=BE=4,再利用勾股定理即可求出AE的长.
解答:解:∵在△ABC中,CA=CB,AD⊥BC,BE⊥AC,
∴AD=BE=4,
∵AB=5,
∴AE=
AB2-BE2
=3,
故答案为:3.
点评:本题考查了等腰三角形的性质以及勾股定理的运用,题目比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•桂林)如图,与∠1是同位角的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.
(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求△BDE的面积.

查看答案和解析>>

同步练习册答案