【题目】如图是反比例函数y=的图象,当-4≤x≤-1时,-4≤y≤-1.
(1)求该反比例函数的表达式;
(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.
【答案】(1)(2)MN≥4
【解析】
(1)根据反比例函数自变量与因变量的取值知当x=-4时,y=-1,当x=-1,时y=-4,代入其中一组即可求出反比例函数的解析式;(2)根据反比例函数的中心对称图性知当点M,N都在直线y=x上时,此时线段MN的长度最短,联立y=与y=x即可求出M、N的坐标,再求出此时MN的距离,故线段MN长度的取值范围为MN≥4.
∵反比例函数图象的两支曲线分别位于第一、三象限,
∴当-4≤x≤-1时,y随着x的增大而减小,
又∵当-4≤x≤-1时,-4≤y≤-1,
∴当x=-4时,y=-1,由y=
得k=4,
∴该反比例函数的表达式为y=.
当点M,N都在直线y=x上时,线段MN的长度最短,
解,
得x1=2,x2=-2,
∴点M,N的坐标分别为(2,2),(-2,-2),
MN =4,
故线段MN长度的取值范围为MN≥4.
科目:初中数学 来源: 题型:
【题目】4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于点和点B,与y轴交于点.
求该二次函数的表达式;
过点A的直线且交抛物线于另一点D,求直线AD的函数表达式;
在的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某灯饰商店销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似地看作一次函数.物价部门规定该品牌的护眼灯售价不能超过36元.
(1)如果该商店想要每月获得2000元的利润,那么销售单价应定为多少元?
(2)设该商店每月获得利润为(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点.
(1)求出反比例函数与一次函数的表达式;
(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.
(1)求证:△ABE∽△DEF.
(2)若正方形的边长为4,求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点为上一点,点为上一点,且.
(1)如图1,若,求证:;
(2)如图2,若,求证:;
(3) 如图3,在(2)的条件下,若,且,,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,3)、B(6,n)在双曲线y=(x>0)上,直线y=ax+b经过A、B两点,并与x轴、y轴分别相交手C、D两点,已知S△OAB=8.
(1)求双曲线y=的函数表达式;
(2)求△COD的周长;
(3)直接写出不等式-ax>b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:
(1)经过多少秒后,△CPQ的面积为8cm?
(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com