精英家教网 > 初中数学 > 题目详情
RtΔABC中,∠C=90°,点D、E分别是ΔABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠.
(1)若点P在线段AB上,如图(1)所示,且∠=50°,则∠1+∠2=  ___________ °;
(2)若点P在边AB上运动,如图(2)所示,则∠、∠1、∠2之间有何关系?
(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠、∠1、∠2之间有何关系?猜想并说明理由。
(1)140°;(2)∠1+∠2=90°+∠α;(3)∠1=90°+∠2+α;(4)∠2=90°+∠1-α.

试题分析:(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;
(2)利用(1)中所求得出答案即可;
(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;
(4)利用三角形内角和定理以及邻补角的性质可得出.
试题解析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,
∴∠1+∠2=∠C+∠α,
∵∠C=90°,∠α=50°,
∴∠1+∠2=140°;
(2)由(1)得出:
∠α+∠C=∠1+∠2,
∴∠1+∠2=90°+∠α

(3)∠1=90°+∠2+α,
理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,
∴∠1=∠C+∠2+α=90°+∠2+α,
(4)∵∠PFD=∠EFC,
∴180°-∠PFD=180°-∠EFC,
∴∠α+180°-∠1=∠C+180°-∠2,
∴∠2=90°+∠1-α.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.
(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E,联结AC、DF,∠A=∠D.
求证:AB=DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面上有一半径为1 cm的圆定点A,OA="4" cm.以点A为旋转中心,使圆O分别顺时针旋转90°,逆时针旋转60°,得到圆B和圆C,作出这两个圆.
(1)试问圆B或圆C的圆心与圆O的圆心O的距离是多少?
(2)试问圆B和圆C的圆心的距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为解决停车难得问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出    个这样的停车位(

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一个多边形的每一个外角都是40°,则这个多边形是(   )
A.六边形B.八边形 C.九边形 D.十边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的顶点是正方形网格的格点,则sinA的值为 (     )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,BE、CF都是△ABC的角平分线,且∠BDC=1100,则∠A的度数为 (     )
A.500B.400C.700D.350

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是
A.B.C.3D.4

查看答案和解析>>

同步练习册答案