1£®Å×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãA¡¢B£¬¶¥µãΪC£¬Èô½«´ËÅ×ÎïÏßÑØxÖáÏòÉÏ·­ÕÛ£¬Ê¹µãCÂäÔÚµãD´¦£¬µÃµ½ÈçͼËùʾͼÐμÇ×÷ͼÐÎF£®
£¨1£©ÈôAB=6£¬¶Ô³ÆÖáΪֱÏßx=4£®Çó£º
¢Ù¡÷ABDµÄÃæ»ý£»
¢ÚÈôÖ±Ïß${l}_{1}£ºy=\frac{1}{2}x-6$ÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÑØyÖáÏòÉÏÔ˶¯£¬Ô˶¯Ê±¼äΪt s£¬µ±l1ÓëͼÐÎFÓÐËĸö¹«¹²µãʱ£¬ÇótµÄ·¶Î§£®
£¨2£©ÈôÒÔƽÐÐÓÚxÖáµÄÖ±Ïßl2£ºy=2ÓëͼÐÎFÓÐÈý¸ö¹«¹²µãÇÒ¹«¹²µãµÄºá×ø±êΪһֱ½ÇÈý½ÇÐεÄÈý±ß³¤£¬Çób¡¢cµÄÖµ£®

·ÖÎö £¨1£©¢ÙÊ×ÏÈÇó³öA¡¢BÁ½µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÇÐÏßÅ×ÎïÏߵĽâÎöʽ£¬ÔÙÇó³ö¶¥µãCµÄ×ø±ê¼´¿É½â¾öÎÊÌ⣻
¢ÚÓÉ¢Ù¿ÉÖª£¬·­ÕÛºóµÄÅ×ÎïÏߵĽâÎöʽΪy=-x2+8x-7£¬ÉèÖ±Ïß${l}_{1}£ºy=\frac{1}{2}x-6$ƽÒƺóµÄ½âÎöʽy=$\frac{1}{2}$x+b£¬µ±Ö±Ïßy=$\frac{1}{2}$x+b¾­¹ýA£¨1£¬0£©Ê±£¬Çó³öbµÄÖµ£¬µ±Ö±Ïßy=$\frac{1}{2}$x+bÓëy=-x2+8x-7Ö»ÓÐÒ»¸ö½»µãʱ£¬Çó³öbµÄÖµ¼´¿É½â¾öÎÊÌ⣻
£¨2£©Èçͼ2ÖУ¬ÉèÖ±Ïßy=2ÓëͼÐÎFÓÐÈý¸ö¹«¹²µã£¬Èý¸ö¹«¹²µã·Ö±ðΪE¡¢D¡¢F£®ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£®ÓÉ$\left\{\begin{array}{l}{y=2}\\{y={x}^{2}+bx+c}\end{array}\right.$ÏûÈ¥yµÃµ½x2+bx+c-2=0£¬¿ÉµÃx1+x2=-b£¬x1x2=c-2£¬ÓÉÌâÒâÅ×ÎïÏßy=x2+bx+c£¬µÄ¶¥µãµÄ×Ý×ø±êΪ-2£¬¿ÉµÃ$\frac{4c-{b}^{2}}{4}$=-2£¬¼´b2=4c+8£¬ÓÉÖ±Ïßl2£ºy=2ÓëͼÐÎFÓÐÈý¸ö¹«¹²µãÇÒ¹«¹²µãµÄºá×ø±êΪһֱ½ÇÈý½ÇÐεÄÈý±ß³¤£¬¿ÉµÃx22=x12+£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©2£¬ÀûÓøùÓëϵÊý¹Øϵ£¬×ª»¯Îª¹ØÓÚb¡¢cµÄ·½³Ì¼´¿É½â¾öÎÊÌ⣻

½â´ð ½â£º£¨1£©¢Ù¡ßAB=6£¬¶Ô³ÆÖáx=4£¬
¡àA£¨1£¬0£©£¬B£¨7£¬0£©£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=£¨x-1£©£¨x-7£©=x2-8x+7=£¨x-4£©2-9£¬
¡àC£¨4£¬-9£©£¬
¡ßDÓëC¹ØÓÚxÖá¶Ô³Æ£¬
¡àD£¨4£¬9£©£¬
¡àS¡÷ABD=$\frac{1}{2}$¡Á6¡Á9=27£®

¢ÚÈçͼ1ÖУ¬

ÓÉ¢Ù¿ÉÖª£¬·­ÕÛºóµÄÅ×ÎïÏߵĽâÎöʽΪy=-x2+8x-7£¬
ÉèÖ±Ïß${l}_{1}£ºy=\frac{1}{2}x-6$ƽÒƺóµÄ½âÎöʽy=$\frac{1}{2}$x+b£¬
µ±Ö±Ïßy=$\frac{1}{2}$x+b¾­¹ýA£¨1£¬0£©Ê±£¬0=$\frac{1}{2}$+b£¬
b=-$\frac{1}{2}$£¬
µ±Ö±Ïßy=$\frac{1}{2}$x+bÓëy=-x2+8x-7Ö»ÓÐÒ»¸ö½»µãʱ£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+b}\\{y=-{x}^{2}+8x-7}\end{array}\right.$ÏûÈ¥yµÃµ½x2-$\frac{15}{2}$x+b+7=0£¬
ÓÉ¡÷=0¿ÉµÃb=$\frac{113}{16}$£¬
¡ß-$\frac{1}{2}$-£¨-6£©=$\frac{11}{2}$£¬$\frac{113}{16}$-£¨-6£©=$\frac{209}{16}$£¬
¹Û²ìͼÏó¿ÉÖª£¬µ±$\frac{11}{2}$£¼t£¼$\frac{209}{16}$ʱ£¬µ±l1ÓëͼÐÎFÓÐËĸö¹«¹²µã£®

£¨2£©Èçͼ2ÖУ¬ÉèÖ±Ïßy=2ÓëͼÐÎFÓÐÈý¸ö¹«¹²µã£¬Èý¸ö¹«¹²µã·Ö±ðΪE¡¢D¡¢F£®

ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£®
ÓÉ$\left\{\begin{array}{l}{y=2}\\{y={x}^{2}+bx+c}\end{array}\right.$ÏûÈ¥yµÃµ½x2+bx+c-2=0£¬
¡àx1+x2=-b£¬x1x2=c-2£¬
ÓÉÌâÒâÅ×ÎïÏßy=x2+bx+c£¬µÄ¶¥µãµÄ×Ý×ø±êΪ-2£¬
¡à$\frac{4c-{b}^{2}}{4}$=-2£¬
¡àb2=4c+8£¬
¡ßÖ±Ïßl2£ºy=2ÓëͼÐÎFÓÐÈý¸ö¹«¹²µãÇÒ¹«¹²µãµÄºá×ø±êΪһֱ½ÇÈý½ÇÐεÄÈý±ß³¤£¬
¡àx22=x12+£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©2£¬
¡à£¨x2+x1£©£¨x2-x1£©=$\frac{£¨{x}_{1}+{x}_{2}£©^{2}}{4}$£¬
¡à16£¨x2-x1£©2=£¨x1+x2£©2£¬
¡à16[£¨x1+x2£©2-4x1x2]=£¨x1+x2£©2£¬
¡à16[b2-4£¨c-2£©]=b2£¬
¡à16[4c+8-4c+8]=4c+8£¬
¡àc=62£¬b=-16»ò16£¨ÉáÆúÒòΪb£¼0£©£¬
¡àb=-16£¬c=62£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢·­Õ۱任¡¢Æ½ÒƱ任¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ£¬¶þÔª¶þ´Î·½³Ì×éµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÀûÓòÎÊý¹¹½¨·½³Ì×é½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈçͼËùʾ£¬¡ÏMON=45¡ã£¬µãPÊÇ¡ÏMONÄÚÒ»µã£¬¹ýµãP×÷PA¡ÍOMÓÚµãA¡¢PB¡ÍONÓÚµãB£¬ÇÒPB=2$\sqrt{2}$£®È¡OPµÄÖеãC£¬Áª½áAC²¢ÑÓ³¤£¬½»OBÓÚµãD£®
£¨1£©ÇóÖ¤£º¡ÏADB=¡ÏOPB£»
£¨2£©ÉèPA=x£¬OD=y£¬Çóy¹ØÓÚxµÄº¯Êý½âÎöʽ£»
£¨3£©·Ö±ðÁª½áAB¡¢BC£¬µ±¡÷ABDÓë¡÷CPBÏàËÆʱ£¬ÇóPAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬Õý·½ÐÎABCDºÍÕý·½ÐÎCGEFµÄ±ß³¤·Ö±ðÊÇ3ºÍ5£¬ÇÒµãB¡¢C¡¢GÔÚͬһֱÏßÉÏ£¬MÊÇÏ߶ÎAEµÄÖе㣬Á¬½ÓMF£¬ÔòMFµÄ³¤Îª$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨-3£¬0£©¡¢B£¨0£¬4£©£¬¶Ô¡÷OABÁ¬Ðø×÷Ðýת±ä»»£¬ÒÀ´ÎµÃµ½¡÷1¡¢¡÷2¡¢¡÷3¡¢¡÷4¡­£¬Ôò¡÷2016µÄÖ±½Ç×ø±ê¶¥µãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨8053£¬0£©B£®£¨8064£¬0£©C£®£¨8053£¬$\frac{12}{5}$£©D£®D¡¢£¨8064£¬$\frac{12}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÅ×ÎïÏßy=$-\frac{1}{3}{x}^{2}+\frac{5}{3}x+12$ÓëxÖá½»ÓÚµãA£¬B£¨AÔÚBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓBC£¬yÖáÉϵĵãP£¨0£¬m£©£¬¹ýµãP×÷BCµÄ´¹Ïß½»¶Ô³ÆÖáÓÒ²àÅ×ÎïÏßÓÚµãQ£¬DΪxÖáÉÏÒ»¶¯µã£®
£¨I£©ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©µ±m=$\frac{11}{2}$ʱ£¬Èô¡÷PQDΪֱ½ÇÈý½ÇÐΣ¬ÇóµãDµÄ×ø±ê£»
£¨3£©µãDÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬Èô´æÔÚΨһµÄλÖã¬Ê¹µÃ¡÷PQD³ÉΪÒÔPQΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¬ÇëÇó³öËùÓÐÂú×ãÌõ¼þµÄmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ö±Ïßl£ºy=mx-m+1£¨mΪ³£Êý£¬ÇÒm¡Ù0£©Óë×ø±êÖá½»ÓÚA¡¢BÁ½µã£¬Èô¡÷AOB£¨OÊÇÔ­µã£©µÄÃæ»ýǡΪ2£¬Ôò·ûºÏÒªÇóµÄÖ±ÏßlÓУ¨¡¡¡¡£©
A£®1ÌõB£®2ÌõC£®3ÌõD£®4Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁи÷ͼÖУ¬¼ÈÊÇÖá¶Ô³ÆͼÐÎÓÖÊÇÖÐÐĶԳÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬Õý·½ÐÎABCD£¬¹ýA×÷Ö±ÏßAE£¬¹ýD×÷DG¡ÍAE£¬AG=GE£¬Á¬DE£®
£¨1£©ÇóÖ¤£ºDE=DC£»
£¨2£©Èô¡ÏCDEµÄƽ·ÖÏß½»EAµÄÑÓ³¤ÏßÓÚFµã£¬Á¬BF£®ÇóÖ¤£ºDF-$\sqrt{2}$FA=FB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®µÈ±ßÈý½ÇÐεıßÐľàΪ$\sqrt{3}$£¬Ôò¸ÃµÈ±ßÈý½ÇÐεı߳¤ÊÇ£¨¡¡¡¡£©
A£®3$\sqrt{3}$B£®6C£®2$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸