精英家教网 > 初中数学 > 题目详情

【题目】农经公司以30/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(/千克)之间的关系,经过市场调查获得部分数据如下表:

销售价格x(/千克)

30

35

40

45

50

日销售量p(千克)

600

450

300

150

0

(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定px之间的函数表达式;

(2)求日销售利润WX之间的函数表达式.

【答案】12

【解析】

1)首先根据表中的数据,利用待定系数法求解可得;

2)根据题意列出日销售利润w与销售价格x之间的函数关系式.

(1)设函数关系式为P=kx+b

解得:k=30b=1500

P=30x+1500

∴所求的函数关系为p=30x+1500

(2)设日销售利润w=P(x30)=(30x+1500)(x30)

w=30x2+2400x45000.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20/每天的维护费用,设每间客房的定价提高了x元.

(1)填表(不需化简)

入住的房间数量

房间价格

总维护费用

提价前

60

200

60×20

提价后

  

  

  

(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙I是△ABC的内切圆,切点分别是DEF

1)若∠B50°,∠C70°,则∠DFE的度数为

2)若∠DFE50°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图有一座抛物线形拱桥,桥下面在正常水位是AB20m,水位上升3m就达到警戒线CD,这是水面宽度为10m

1)在如图的坐标系中求抛物线的解析式。

(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线(a>0)A(3,),B(4,)两点,之间的关系是_______________.(用“<”号连接)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区2014年投入教育经费200万元,2016年投入教育经费242万元.

(1)求2014年至2016年该地区投入教育经费的年平均增长率;

(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+c,函数值y与自变量x之间的部分对应值如下表:

x

4

1

0

1

y

2

1

2

7

1)此二次函数图象的对称轴是直线,此函数图象与x轴交点个数为   

2)求二次函数的函数表达式;

3)当﹣5x<﹣1时,请直接写出函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线相交于两点,且抛物线经过点

1)求抛物线的解析式.

2)点是抛物线上的一个动点(不与点重合),过点作直线轴于点,交直线于点.当时,求点坐标;

3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一堂数学实践课上,赵老师给出了下列问题:

(提出问题)

1)如图1,在△ABC中,EBC的中点,PAE的中点,就称CP是△ABC的“双中线”,∠ACB90°,AC3AB5.则CP   

(探究规律)

2)在图2中,E是正方形ABCD一边上的中点,PBE上的中点,则称AP是正方形ABCD的“双中线”,若AB4.则AP的长为   (按图示辅助线求解);

3)在图3中,AP是矩形ABCD的“双中线”,若AB4BC6,请仿照(2)中的方法求出AP的长,并说明理由;

(拓展应用)

4)在图4中,AP是平行四边形ABCD的“双中线”,若AB4BC10,∠BAD120°.求出△ABP的周长,并说明理由?

查看答案和解析>>

同步练习册答案