精英家教网 > 初中数学 > 题目详情
如图,已知A(-3,0),B(0,-4).点P为双曲线y=
k
x
(x>0,k>0)
上的任精英家教网意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.
(1)当四边形ABCD为菱形时,求双曲线的解析式;
(2)若点p为直线y=
3
4
x
与(1)所求的双曲线的交点,试判定此时四边形ABCD的形状,并加以证明.
分析:(1)当四边形ABCD为菱形时,由菱形的轴对称性可求C、D两点坐标,又PC⊥x轴,PD⊥y轴,则P、C两点横坐标相等,P、D两点纵坐标相等,可求P点坐标,确定双曲线解析式;
(2)联立直线与双曲线解析式,求P点坐标,可判断△OAD,△OBC为等腰直角三角形,从而确定四边形ABCD的形状.
解答:(1)解法一:∵四边形ABCD为菱形,
∴OA=OC,OB=OD(1分)
可得点p的坐标为P(3,4)(3分)
∴k=12,即双曲线的解析式为y=
12
x
(x>0,k>0)
(5分)
解法二:
由勾股定理可求得菱形的边长为5,所以求得点C、点D的坐标C(3,0)、D(0,4),
所以点P坐标为P(3,4),下同解(一);

(2)依题意:联立
y=
3
4
x
y=
12
x

解得
x=4
y=3
(x>0),
即P(4,3)(7分)
此时,OA=OD=3、OB=OC=4,△OAD,△OBC为等腰直角三角形,
∴AD∥BC,(9分)
又据勾股定理求得AB=CD=5.
所以四边形ABCD为等腰梯形(10分)
点评:本题考查了反比例函数的综合运用.关键是通过坐标系里图形的轴对称性,特殊三角形的性质,求点的坐标,确定双曲线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,过A作⊙O的切线,与BC的延长线交于D,且AD=
3
+1
,CD精英家教网=2,∠ADC=30°
(1)AC与BC的长;
(2)求∠ABC的度数;
(3)求弓形AmC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

40、尺规作图:如图,已知直线BC及其外一点P,利用尺规过点P作直线BC的平行线.(用两种方法,不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,已知直线AB∥CD,∠1=50°,则∠2=
50
度.

查看答案和解析>>

同步练习册答案