精英家教网 > 初中数学 > 题目详情

a取何范围内的实数时,代数式的值是一个常数?

原式=|a-2|+|a-3|,

当a≤2,原式=-a+2-a+3=-2a+5;

当2<a≤3时,原式=a-2-a+3=1;

当a>3时,原式=a-2+a-3=2a-5,

所以当a取某一范围内的实数时代数式 的值是一个常数,则这个常数是1.



练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线C:y=-
1
2
x2+
1
2
x+3与x轴交于点A、B两点,过定点的直线l:y=
1
a
x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(
 
)、B(
 
)及点Q的坐标:Q(
 
)(用含a的代数式表示);并依点Q坐标的变化确定:当
 
时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得精英家教网∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线C:y=-数学公式x2+数学公式x+3与x轴交于点A、B两点,过定点的直线l:y=数学公式x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2004•龙岩)如图,已知抛物线C:y=-x2+x+3与x轴交于点A、B两点,过定点的直线l:y=x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.

查看答案和解析>>

同步练习册答案