分析 (1)利用因式分解法求解即可;
(2)根据判别式的意义得到△=[-(k+1)]2-4($\frac{1}{4}$k2+1)≥0,然后解不等式即可.
解答 解:(1)x2-4x-5=0,
(x-5)(x+1)=0,
x-5=0,或x+1=0,
解得x1=5,x2=-1;
(2)∵关于x的方程x2-(k+1)x+$\frac{1}{4}$k2+1=0有两个实数根,
∴△=[-(k+1)]2-4($\frac{1}{4}$k2+1)≥0,
解得k≥$\frac{3}{2}$.
故k的取值范围为k≥$\frac{3}{2}$.
点评 本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.也考查了利用因式分解法解一元二次方程.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com