分析 (1)首先依据平行线的性质证明∠B=∠DAE,∠C=∠CAE,然后结合角平分线的定义可证明∠B=∠C,故此可证明△ABC为等腰三角形;
(2)首先证明△AEF≌△CFG,从而得到CG的长,然后可求得BC的长,于是可求得△ABC的周长.
解答 证明:(1)∵AE∥BC,
∴∠B=∠DAE,∠C=∠CAE.
∵AE平分∠DAC,
∴∠DAE=∠CAE.
∴∠B=∠C.
∴△ABC是等腰三角形.
(2)∵F是AC的中点,
∴AF=CF.
在△AFE和△CFG中$\left\{\begin{array}{l}{∠C=∠CAE}\\{AF=FC}\\{∠AFE=∠GFC}\end{array}\right.$,
∴△AEF≌△CFG.
∴AE=GC=8.
∵GC=2BG,
∴BG=4.
∴BC=12.
∴△ABC的周长=AB+AC+BC=10+10+12=32.
点评 本题主要考查的是等腰三角形的性质和判定,熟练掌握等腰三角形的性质和判定定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com