【题目】已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是( )
A. AD平分∠BAC
B. AB=AC且BD=CD
C. AD为中线
D. EF⊥AD
【答案】C
【解析】
首先根据题意画出图形,然后由DE∥AC、DF∥AB,判定四边形DEAF为平行四边形,再由菱形的判定定理求解即可求得答案;注意掌握排除法在选择题中的应用.
如图,∵DE∥AC、DF∥AB,
∴四边形DEAF为平行四边形,
A、∵AD平分∠BAC,DF∥AB,
∴∠BAD=∠CAD,∠BAD=∠ADF,
∴∠CAD=∠ADF,
∴AF=DF,
∵四边形DEAF为平行四边形,
∴四边形DEAF为菱形;
B、∵AB=AC且BD=CD,
∴AD平分∠BAC,
同A可得:四边形DEAF为菱形;
C、∵由AD为中线,得不到AD平分∠BAC,证不出四边形DEAF的邻边相等,
∴不能判断四边形DEAF为菱形;
D、∵AD⊥EF,四边形DEAF为平行四边形,
∴四边形DEAF是菱形.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=600,则AE的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是( )
A. ①② B. ③⑤ C. ①③④ D. ①④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com