·ÖÎö £¨1£©¸ù¾ÝÕÛµþͼÐεÄÖá¶Ô³ÆÐÔ£¬¡÷CED¡¢¡÷CBDÈ«µÈ£¬Ê×ÏÈÔÚRt¡÷CEOÖÐÇó³öOEµÄ³¤£¬½ø¶ø¿ÉµÃµ½AEµÄ³¤£»ÔÚRt¡÷AEDÖУ¬AD=AB-BD¡¢ED=BD£¬ÀûÓù´¹É¶¨Àí¿ÉÇó³öADµÄ³¤£®½øÒ»²½ÄÜÈ·¶¨Dµã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÓÉÓÚ¡ÏDEC=90¡ã£¬Ê×ÏÈÄÜÈ·¶¨µÄÊÇ¡ÏAED=¡ÏOCE£¬ÈôÒÔP¡¢Q¡¢CΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ADEÏàËÆ£¬ÄÇô¡ÏQPC=90¡ã»ò¡ÏPQC=90¡ã£¬È»ºóÔÚÕâÁ½ÖÖÇé¿öÏ£¬·Ö±ðÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀýÇó³ö¶ÔÓ¦µÄtµÄÖµ£»
£¨3£©Ö±½ÓÀûÓöԳƵãµÄÐÔÖʵóöMµãλÖ㬽ø¶øµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©¡ßËıßÐÎABCOΪ¾ØÐΣ¬
¡à¡ÏOAB=¡ÏAOC=¡ÏB=90¡ã£¬AB=CO=8£¬AO=BC=10£®
ÓÉÌâÒ⣬¡÷BDC¡Õ¡÷EDC£®
¡à¡ÏB=¡ÏDEC=90¡ã£¬EC=BC=10£¬ED=BD£®
Óɹ´¹É¶¨ÀíÒ×µÃEO=6£®
¡àAE=10-6=4£¬
ÉèAD=x£¬ÔòBD=ED=8-x£¬Óɹ´¹É¶¨Àí£¬µÃx2+42=£¨8-x£©2£¬
½âµÃ£¬x=3£¬¡àAD=3£®
¡ßÅ×ÎïÏßy=ax2+bx+c¹ýµãD£¨3£¬10£©£¬C£¨8£¬0£©£¬O£¨0£¬0£©
¡à$\left\{\begin{array}{l}{9a+3b=10}\\{64a+8b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{2}{3}}\\{b=\frac{16}{3}}\end{array}\right.$
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{2}{3}$x2+$\frac{16}{3}$x£®
£¨2£©¡ß¡ÏDEA+¡ÏOEC=90¡ã£¬¡ÏOCE+¡ÏOEC=90¡ã£¬
¡à¡ÏDEA=¡ÏOCE£¬
ÓÉ£¨1£©¿ÉµÃAD=3£¬AE=4£¬DE=5£®
¶øCQ=t£¬EP=2t£¬¡àPC=10-2t£®
µ±¡ÏPQC=¡ÏDAE=90¡ã£¬¡÷ADE¡×¡÷QPC£¬
¡à$\frac{CQ}{AE}$=$\frac{CP}{DE}$£¬¼´$\frac{t}{4}$=$\frac{10-2t}{5}$£¬
½âµÃ£ºt=$\frac{40}{13}$£®
µ±¡ÏQPC=¡ÏDAE=90¡ã£¬¡÷ADE¡×¡÷PQC£¬
¡à$\frac{PC}{AE}$=$\frac{QC}{DE}$£¬¼´$\frac{10-2t}{4}$=$\frac{t}{5}$£¬
½âµÃ£ºt=$\frac{25}{7}$£®
¡àµ±t=$\frac{40}{13}$»ò$\frac{25}{7}$ʱ£¬ÒÔP¡¢Q¡¢CΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ADEÏàËÆ£®
£¨3£©ÈçͼËùʾ£º×÷µãD£¨3£¬10£©¹ØÓÚ¶Ô³ÆÖáx=4µÄ¶Ô³ÆµãD1£¨5£¬10£©£¬Á¬½ÓD1E½»¶Ô³ÆÖáx=4ÓÚµãM£¬´ËʱMD+MEµÄÖµ×îС£¬
ÉèÖ±ÏßD1EµÄ½âÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£¬
½«E£¨0£¬6£©£¬D1£¨5£¬10£©´úÈëµÃ£º$\left\{\begin{array}{l}{b=6}\\{5k+b=10}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=\frac{4}{5}}\\{b=6}\end{array}\right.$£¬
¹ÊÖ±ÏßD1EµÄ½âÎöʽΪ£ºy=$\frac{4}{5}$x+6£¨0¡Üx¡Ü5£©£¬
Áîx=4£¬½âµÃ£ºy=$\frac{46}{6}$£¬
¡àM£¨4£¬$\frac{46}{5}$£©£¬
´Ëʱ£¬MD+ME=ME+MD1=D1E=$\sqrt{A{E}^{2}+A{D}^{2}}$=$\sqrt{41}$£®
µãÆÀ ´ËÌ⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÌâÄ¿Éæ¼°ÁËͼÐεÄÕÛµþ±ä»»¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈÖصã֪ʶ£®µÚ2ÎÊÐèÒª½øÐзÖÀàÌÖÂÛ£¬ÒÔÃ⩽⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 4x2-1 | B£® | 2x2-1 | C£® | 4x-1 | D£® | 4x2+1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨2-3x£©£¨1-2x£©=1 | B£® | $\frac{1}{2}$£¨2-3x£©£¨1-2x£©=1 | C£® | $\frac{1}{4}$£¨2-3x£©£¨1-2x£©=1 | D£® | $\frac{1}{4}$£¨2-3x£©£¨1-2x£©=2 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com