精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/精英家教网秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.
分析:(1)因为四边形ABQP是不规则的四边形,它的面积S不能直接求出.而△ABC的面积可以求出,△PCQ的面积可以用t表示,所以s可以用这两个三角形的面积之差表示.这样关系式就可以求出了.
(2)假设四边形ABQP与△CPQ的面积相等,则能得到关于t的一元二次方程,求解即可.
解答:精英家教网解:(1)过点P作PE⊥BC于E
Rt△ABC中,AC=
AB2+BC2
=
62+82
=10(米)
由题意知:AP=2t,CQ=t,则PC=10-2t
由AB⊥BC,PE⊥BC得PE∥AB
PE
AB
=
PC
AC

即:
PE
6
=
10-2t
10

∴PE=
3
5
(10-2t)=-
6
5
t+6
又∵S△ABC=
1
2
×6×8=24
∴S=S△ABC-S△PCQ=24-
1
2
•t•(-
6
5
t+6)=
3
5
t2-3t+24
即:S=
3
5
t2-3t+24(8分)

(2)假设四边形ABQP与△CPQ的面积相等,则有:
3
5
t2-3t+24=12
即:t2-5t+20=0
∵b2-4ac=(-5)2-4×1×20<0
∴方程无实根
∴在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积不能相等.
点评:此题首先会用勾股定理和平行线分线段成比例的性质求AC和PE,然后用面积的割补法求函数解析式.(2)中要会导出一元二次方程,然后用判别式判断即可.这道题关键在于面积的割补法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案