精英家教网 > 初中数学 > 题目详情
已知,在△ABC中,AB=AC,在图(1)中,点O是△ABC内的任意一点,而在图(2)中,点O是△ABC外的任意一点.在两图中,分别以OB,OC为边画出平行四边形OBDC,连接并延长OA到E,使得AE=OA,再连接DE.观察两图,写出与线段DE有关的两个猜想,并在其中的一个图形中给出证明.(要求:在猜想中不能出现已知中未标的字母.)
精英家教网
分析:在连接OD、AF后,根据平行四边形的性质,F点就是OD的中点,AF就是等腰三角形底边上的高,由OA=AE知,AF连线时三角形OED的中位线,根据中位线性质可得DE⊥BC以及DE的长是△ABC底边BC上高的2倍.
解答:精英家教网解:猜想1:DE⊥BC;
猜想2:DE的长是△ABC底边BC上高的2倍.

证明:(1)连接OD交BC于点F,连接AF,
∵四边形OBDC为平行四边形,
∴BF=CF,
∵AB=AC,
∴AF⊥BC,
∵OA=AE,OF=DF,
∴AF∥DE,
∴DE⊥BC;
证明:在图(2)中,连接OD交BC于点F,连接AF,
∵四边形OBDC为平行四边形,
∴BF=CF,OF=DF,
∵AB=AC,
∴AF⊥BC,
∵AE=OA,
AF=
1
2
DE
,AF∥DE,
∴DE⊥BC,DE=2AF,
即DE⊥BC,DE的长是△ABC底边BC上高的2倍.
点评:此题在考查平行四边形性质的同时,更重要的是考查了三角形中位线的性质和应用,难易适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案