【题目】如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度同时沿直线AB向左运动(C在线段AP上,D在线段BP上),运动时间为ts
(I)若C、D运动1s时,且PD=2AC,求AP的长;
(II)若C、D运动到任一时刻时,总有PD=2AC,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;
(III)在(II)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.
【答案】(Ⅰ)PA=4cm;(Ⅱ)长度不发生变化,AP=4cm,(Ⅲ)PQ=4cm或12cm.
【解析】
(Ⅰ)由AC+CP+PD+BD=AB,列出方程可求AC的长,即可求解;
(Ⅱ)由线段的和差关系可求解;
(Ⅲ)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系.
解:(Ⅰ)根据C、D的运动速度可知:BD=2cm,PC=1cm,
∵AC+CP+PD+BD=AB,且PD=2AC,
∴AC+1+2AC+2=12,
∴AC=3cm,
∴PA=4ccm;
(Ⅱ)长度不发生变化,
理由如下:
根据C、D的运动速度可知:BD=2PC,
∵AC+CP+PD+BD=AB,且PD=2AC,
∴3AC+3PC=12,
∴AP=4cm,
(Ⅲ)如图:
∵AQ﹣BQ=PQ,
∴AQ=PQ+BQ;
又∵AQ=AP+PQ,
∴AP=BQ,
∴PQ=AB=4cm;
当点Q'在AB的延长线上时,
AQ′﹣AP=PQ′,
所以AQ′﹣BQ′=PQ=AB=12cm.
综上所述,PQ=4cm或12cm.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),
且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz<0,则+++的值为0或﹣4;④若a,b互为相反数,则=﹣1;⑤若x=y,则=.其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )
A. 3对 B. 5对 C. 6对 D. 7对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.
(1)求一次函数的解析式;
(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;
(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=,求阴影区域的面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格如下表:
A型车 | B型车 | |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA⊥OB,引射线OC(点C在∠AOB外),若∠BOC=α(0°<α<90°),
OD平∠BOC,OE平∠AOD.
(1)若α=40°,请依题意补全图形,并求∠BOE的度数;
(2)请根据∠BOC=α,求出∠BOE的度数(用含α的表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com