精英家教网 > 初中数学 > 题目详情

【题目】设函数y= (k≠0,x>0)的图象如图所示,若z= ,则z关于x的函数图象可能为(

A.
B.
C.
D.

【答案】D
【解析】解:∵y= (k≠0,x>0),
∴z= = = (k≠0,x>0).
∵反比例函数y= (k≠0,x>0)的图象在第一象限,
∴k>0,
>0.
∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.
故选D.
根据反比例函数解析式以及z= ,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)请画出ABC关于y轴对称的A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);

(2)直接写出A′,B′,C′三点的坐标:A′(   ),B′(   ),C′(   

(3)计算ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q

(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,y=d2
①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.

(1)试求出y与x之间的一个函数关系式;
(2)利用(1)的结论:
求每千克售价为多少元时,每天可以获得最大的销售利润.
②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,BECD,BE=DE,BC=DA.

求证:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.

(1)求sin∠EAC的值.
(2)求线段AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校学生的课外阅读情况,随机抽查了10学生周阅读用时数,结果如下表:

周阅读用时数(小时)

4

5

8

12

学生人数(人)

3

4

2

1

则关于这10名学生周阅读所用时间,下列说法正确的是(  )
A.中位数是6.5
B.众数是12
C.平均数是3.9
D.方差是6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

查看答案和解析>>

同步练习册答案