精英家教网 > 初中数学 > 题目详情
8.计算:4$\sqrt{\frac{1}{2}}$+($\sqrt{3}$+1)2-$\sqrt{8}$-$\sqrt{12}$.

分析 先把各二次根式化简为最简二次根式,然后合并即可.

解答 解:原式=2$\sqrt{2}$+3+2$\sqrt{3}$+1-2$\sqrt{2}$-2$\sqrt{3}$
=4.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.要使分式$\frac{2}{x-1}$有意义,则x应满足(  )
A.x≠1B.x≠-1C.x≠1或x≠-1D.x≠2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在等边三角形ABC中,已知点A(-1,-1),且点B,C在函数y=$\frac{1}{x}$(x>0)的图象上,则△ABC的边长等于2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,数轴上有A、B、C、D、O五个点,点O为原点,点C在数轴上表示的数是5,线段CD的长度为3个单位,线段AB的长度为1个单位,且B、C两点之间的距离为12个单位,请解答下列问题:
(1)点D在数轴上表示的数是8,点A在数轴上表示的数是-8;(2)若点B以每秒2个单位的速度沿数轴向右匀速运动t秒运动到点E处,且CE的长度是2个单位,求点B运动的时间;
(3)把线段CD的中点记作P,如果线段AB以每秒2个单位的速度沿数轴向右匀速运动,同时P点以每秒4个单位的速度沿数轴向左匀速运动,直接写出点P与线段AB的一个端点的距离为1.5个单位时运动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,A(1,0),B(0,2),过点B作直线l∥x轴,点P(a,2)是直线l上的动点,以AP为边在AP右侧作等腰Rt△APQ,使∠APQ=Rt∠.
(1)当a=0时,
①点Q的坐标是(2,3);
②若在y轴上取一点C,使得CA+CQ的值最小,则最小值为3$\sqrt{2}$,点C的坐标为(0,1).
(2)当a=3时,点Q的坐标是(5,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:如图,AB是⊙O的直径,CD是弦,且AB⊥CD于E,P是AB延长线上一点,连接PD,∠PDC=∠CAD.
(1)求证:PD是⊙O的切线;
(2)当AB=12,CD=6时,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.矩形木板长和宽分别为120厘米和80厘米,在4个角上各剪去边长为x厘米的正方形,则余下的面积S(平方厘米)与x(厘米)之间的函数关系式为S=-4x2+9600,自变量取值范围为0<x<40.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC中,AB=AC,tanB=$\frac{1}{2}$,作AD⊥AC交BC与E,且AD=AC,连接CD
(1)若CD=4,求CE的长度;
(2)如图2,∠BAD的角平分线交BC于F,作CG⊥AF的返向延长线与G.求证:$\sqrt{2}$BF+AG=CG;
(3)如图3,将“tanB=$\frac{1}{2}$”改为“sinB=$\frac{1}{2}$”作AD⊥AC,且AD=AC,连接BD,CD,延长DA交BC于E,∠BAD的角平分线的反向延长线交BC于F,作CG⊥AF于G,直接写$\frac{BF•FG}{BD•AE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.化简:-6x2y3÷2x2y=-3y2

查看答案和解析>>

同步练习册答案