【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.
求证:(1)△ABD≌△ACE;
(2)DF=CE.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)求出∠BAD=∠BAC,根据SAS证出△BAD≌△CAE即可;
(2)根据全等推出∠DBA=∠C,根据等腰三角形性质得出∠C=∠ABC,根据平行线性质得出∠ABC=∠DFB,推出∠DFB=∠DBF,根据等腰三角形的判定推出即可.
(1)∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠EAC.在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS);
(2)∵△BAD≌△CAE,∴∠DBA=∠C.
∵AB=AC,∴∠C=∠ABC.
∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.
科目:初中数学 来源: 题型:
【题目】⑴ 阅读理解:我们知道在直角三角形中,有无数组勾股数,例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.
解决问题:① 在无数组勾股数中,是否存在三个连续偶数能组成勾股数?
答: ,若存在,试写出一组勾股数: .
② 在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.
③ 在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.
⑵ 探索升华:是否存在锐角△ABC三边也为连续正整数;且同时还满足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三边的长;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:
(1)(x+1)2+x(x-2),其中x=-;
(2)[(xy+2)(xy-2)-2(x2y2-2)]÷xy,其中x=10,y=-;
(3)已知a+b=12,ab=20,求a(a+b)(a-b)-a(a+b)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=S△ABC;③△DEF是等腰直角三角形;④当∠EDF在△ABC内绕顶点D旋转时D旋转时(点E不与点A、B重合),∠BFE=∠CDF,上述结论始终成立的有( )个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了庆祝建校八十周年,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,使点D恰好落在BC边上的F处……请你根据①②步骤解答下列问题.
(1)找出图中的∠FEC的余角;
(2)计算EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列大棚蔬菜种植情况统计图,回答问题:
(1)填上扇形统计图中括号中的数据;
(2)哪种蔬菜种植面积最大?
(3)哪两种蔬菜种植面积较接近?
(4)已知豆角种了27公顷,种植蔬菜的总面积是多少公顷?种植西红柿多少公顷?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com