精英家教网 > 初中数学 > 题目详情
(2013•济南)已知直线l1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于(  )
分析:过点C作CE⊥l4于点E,延长EC交l1于点F,根据同角的余角相等求出∠α=∠DCF,利用两角对应相等的两三角形相似证明△BEC∽△CFD,再由相似三角形对应边成比例可得BE=
3
2
h,然后在Rt△BCE中利用锐角的正切值等于对边比邻边列式计算即可得解.
解答:解:如图,过点C作CE⊥l4于点E,延长EC交l1于点F.
在矩形ABCD中,∠BCD=90°,
∵∠α+∠BCE=90°,∠BCE+∠DCF=180°-90°=90°,
∴∠α=∠DCF,
又∵∠BEC=∠CFD=90°,
∴△BEC∽△CFD,
BE
CF
=
BC
CD
,即
BE
h
=
6
4

∴BE=
3
2
h.
在Rt△BCE中,∵∠BEC=90°,
∴tanα=
CE
BE
=
2h
3
2
h
=
4
3

故选C.
点评:本题考查了相似三角形的判定与性质,矩形的性质,锐角三角形函数的定义,作辅助线,构造出相似三角形以及∠α所在的直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•济南一模)如图,已知矩形ABCD中,AB=8cm,BC=6cm,如果点P由C出发沿CA方向向点A匀速运动,同时点Q由A出发沿AB方向向点B匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t.(单位:s).(0≤t≤4)解答下列问题:
(1)求AC的长;
(2)当t为何值时,PQ∥BC;
(3)设△AQP的面积为S(单位:cm2),当t为何值时,s=
365
cm2
(4)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南)已知x2-2x-8=0,则3x2-6x-18的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南一模)在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方来.
(1)求运往D、E两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米.C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过12立方米.则A、C两地运往D、E两地有哪几种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南一模)完成下列各题:
(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.
(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.

查看答案和解析>>

同步练习册答案