精英家教网 > 初中数学 > 题目详情
已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(4,6),且AB=2
10

(1)求点B的坐标;
(2)求经过B、D两点的抛物线y=ax2+bx+6的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,使得S△PBC=
1
2
S梯形ABCD
?若存在,请求出该点坐标,若不存在,请说明理由.
(本题满分14分)
(1)在Rt△ABC中,AB=2
10
,OA=D纵坐标=6,
∴BO=
AB2-AO2
=2,
∵点B在x轴的负半轴上
∴B(-2,0);

(2)依题意,
4a-2b+6=0
16a+4b+6=6

解这个方程组,得
a=-
1
2
b=2

y=-
1
2
x2+2x+6


(3)∵A(0,6),D(4,6)
∴AD=4
过点D作DE⊥x轴于点E,则四边形DEOA是矩形,
有DE=OA=6,AD=OE=4
∵四边形ABCD是等腰梯形
CD=AB=2
10

由勾定理得:CE=
DC2-CE2
=
(2
10
)
2
-62
=2
∴OC=2+4=6
∴C(6,0)
∵B(-2,0)
∴BC=8
S梯形ABCD=
1
2
×(4+8)*6=36

S△PBC=
1
2
S梯形ABCD

S△PBC=
1
2
*36=18

设点P的坐标为(x,y),则△PBC的BC边上的高为|y|
1
2
×8×|y|=18

y=±
9
2

p1(x,
9
2
),p2(x,-
9
2
)

∵点p1(x,-
9
2
)
在抛物线上
-
1
2
x2+2x+6=-
9
2

解这个方程得:x1=-3,x2=7
点P1的坐标为(-3,-
9
2
),(7,-
9
2
)

同理可求得:P2的坐标为(2+
7
9
2
),(2-
7
9
2
)

所P点坐标为(-3,-
9
2
),(7,-
9
2
),(2+
7
9
2
),(2-
7
9
2
)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2+bx+c中,若a:b:c=1:4:3,且该函数的最小值是-3,则解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:矩形OABC中,A(6,0),B(6,4),F为AB边的中点,直线EF交边BC于E,且sin∠BEF=
5
5
,P为线段EF上一动点,PM⊥OA于M,PN⊥OC于N.
(1)求直线EF的函数解析式并注明自变量取值范围;
(2)求矩形ONPM的面积的最大值及此时点P的坐标;
(3)矩形ONPM、矩形OABC有可能相似吗?若相似,求出此时点P的坐标;若不相似,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,如图所示.
(1)求点D关于y轴的对称点D′的坐标及a、b的值;
(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;
(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用一段长为30m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长18m,这个矩形的长、宽各为多少时,养鸡场的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案