4£®ÒÑÖª£ºÖ±Ïßy=-$\frac{3}{4}$x+3ÓëxÖáyÖá·Ö±ð½»ÓÚµãA¡¢µãB£¬Å×ÎïÏßy=-$\frac{3}{8}$x2+bx+c¾­¹ýµãAºÍµãB£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãC£¨0£¬2£©£¬µãP£¨m£¬0£©ÊÇÏ߶ÎOAÉϵÄÒ»µã£¨²»ÓëO¡¢AÖغϣ©£¬¹ýµãP×÷PM´¹Ö±xÖᣬ½»Å×ÎïÏßÓÚµãM£¬Á¬½ÓBM¡¢AC¡¢AM£¬ÉèËıßÐÎACBMµÄÃæ»ýΪS£¬ÇóSÓëmµÄº¯Êý¹Øϵʽ£¨²»ÒªÇóд³ö×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãDÊÇÏ߶ÎOPµÄÖе㣬Á¬½ÓBD£¬µ±SÈ¡×î´óֵʱ£¬ÊÔÇóÖ±ÏßBDÓëACËù³ÉµÄÈñ½Ç¶ÈÊý£®

·ÖÎö £¨1£©¸ù¾ÝÒ»´Îº¯Êý½âÎöʽÇó³öA¡¢B×ø±ê£¬´úÈë¶þ´Îº¯Êý½âÎöʽ¼´¿ÉÇó³ö¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÌâÒâ×÷³ö¸¨ÖúÏߣ¬¸ù¾ÝS=SÌÝÐÎOPMB-+S¡÷APM-S¡÷OAC¿ÉµÃº¯Êý½âÎöʽ£»
£¨3£©£©ÓÉ£¨2£©Öк¯Êý¹ØϵʽµÃ³öm¼°SµÄÖµ£¬¸ù¾ÝµãDÊÇÏ߶ÎOPµÄÖеãµÃ³öDµã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAC¡¢BDµÄ½âÎöʽ£¬¹Ê¿ÉµÃ³öGµã×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³öDGµÄ³¤£¬¹ýµãD×÷DF¡ÍACÓÚµãF£¬Çó³öÖ±ÏßDFµÄ½âÎöʽ£¬¹Ê¿ÉµÃ³öFµãµÄ×ø±ê£¬Çó³öDFµÄ³¤£¬ÀûÓÃÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÔÚy=-$\frac{3}{4}$x+3ÖУ¬
µ±y=0ʱ£¬x=4£¬ËùÒÔA£¨4£¬0£©£¬
µ±x=0ʱ£¬y=3£¬ËùÒÔB£¨0£¬3£©£¬
¡ßÅ×ÎïÏßy=-$\frac{3}{8}$x2+bx+c¾­¹ýA¡¢B£¬
¡à$\left\{\begin{array}{l}-6+4b+c=0\\ c=3\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}b=\frac{3}{4}\\ c=3\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{3}{8}$x2+$\frac{3}{4}$x+3£»

£¨2£©Èçͼ1Ëùʾ£¬
¡ßP£¨m£¬0£©£¬
¡àOP=m£¬PM=-$\frac{3}{8}$m2+$\frac{3}{4}$m+3
¡àS=SÌÝÐÎOPMB+S¡÷APM-S¡÷OAC
=$\frac{1}{2}$£¨PM+OB£©•OP+$\frac{1}{2}$AP•PM-$\frac{1}{2}$OA•OC
=$\frac{1}{2}$£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3+3£©•m+$\frac{1}{2}$£¨4-m£©£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£©-$\frac{1}{2}$¡Á4¡Á2
=-$\frac{3}{4}$m2+3m+2£¨0£¼m£¼4£©£»

£¨3£©¡ßÓÉ£¨2£©ÖªS=-$\frac{3}{4}$m2+3m+2£¬
¡àµ±m=2ʱ£¬S×î´ó=5£¬
¡àP£¨2£¬0£©£®
¡ßµãDÊÇÏ߶ÎOPµÄÖе㣬
¡àD£¨1£¬0£©£®
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
¡ßA£¨4£¬0£©£¬C£¨0£¬2£©£¬
¡à$\left\{\begin{array}{l}0=4k+b\\ b=2\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}k=-\frac{1}{2}\\ b=2\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£®
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=ax+c£¨a¡Ù0£©£¬
¡ßB£¨0£¬3£©£¬D£¨1£¬0£©£¬
¡à$\left\{\begin{array}{l}c=3\\ a+c=0\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}a=-3\\ c=3\end{array}\right.$£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-3x+3£¬
¡à$\left\{\begin{array}{l}y=-\frac{1}{2}x+2\\ y=-3x+3\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{2}{5}\\ y=\frac{9}{5}\end{array}\right.$£¬
¡àG£¨$\frac{2}{5}$£¬$\frac{9}{5}$£©£¬
¡àDG=$\sqrt{£¨1-\frac{2}{5}£©^{2}+£¨\frac{9}{5}£©^{2}}$=$\sqrt{\frac{9}{25}+\frac{81}{25}}$=$\frac{3\sqrt{10}}{5}$£®
¹ýµãD×÷DF¡ÍACÓÚµãF£¬
¡ßÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
¡àÉèÖ±ÏßDFµÄ½âÎöʽΪy=2x+d£¬
¡ßD£¨1£¬0£©£¬
¡à2+d=0£¬½âµÃd=-2£¬
¡àÉèÖ±ÏßDFµÄ½âÎöʽΪy=2x-2£¬
¡à$\left\{\begin{array}{l}y=-\frac{1}{2}x+2\\ y=2x-2\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{8}{5}\\ y=\frac{6}{5}\end{array}\right.$£¬
¡àF£¨$\frac{8}{5}$£¬$\frac{6}{5}$£©£¬
¡àDF=$\sqrt{£¨1-\frac{8}{5}£©^{2}+£¨\frac{6}{5}£©^{2}}$=$\frac{3\sqrt{5}}{5}$£¬
¡àsin¡ÏDGF=$\frac{DF}{DG}$=$\frac{\frac{3\sqrt{5}}{5}}{\frac{3\sqrt{10}}{5}}$=$\frac{\sqrt{2}}{2}$£¬
¡à¡ÏDGF=45¡ã£¬¼´Ö±ÏßBDÓëACËù³ÉµÄÈñ½ÇÊÇ45¡ã£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬Éæ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐÎÃæ»ý¹«Ê½¡¢º¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÈ֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÖµµÃ¹Ø×¢£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¶¨Ò壺Èô´æÔÚʵÊý¶Ô×ø±ê£¨x£¬y£©Í¬Ê±Âú×ãÒ»´Îº¯Êýy=px+qºÍ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¬Ôò¶þ´Îº¯Êýy=px2+qx-kΪһ´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ¡°ÁªÒö¡±º¯Êý£®
£¨1£©ÊÔÅжϣ¨ÐèҪд³öÅжϹý³Ì£©£ºÒ»´Îº¯Êýy=-x+3ºÍ·´±ÈÀýº¯Êýy=$\frac{2}{x}$ÊÇ·ñ´æÔÚ¡°ÁªÒö¡±º¯Êý£¬Èô´æÔÚ£¬Ð´³öËüÃǵġ°ÁªÒö¡±º¯ÊýºÍʵÊý¶Ô×ø±ê£®
£¨2£©ÒÑÖª£ºÕûÊým£¬n£¬tÂú×ãÌõ¼þt£¼n£¼8m£¬²¢ÇÒÒ»´Îº¯Êýy=£¨1+n£©x+2m+2Óë·´±ÈÀýº¯Êýy=$\frac{2015}{x}$´æÔÚ¡°ÁªÒö¡±º¯Êýy=£¨m+t£©x2+£¨10m-t£©x-2015£¬ÇómµÄÖµ£®
£¨3£©Èôͬʱ´æÔÚÁ½×éʵÊý¶Ô×ø±ê[x1£¬y1]ºÍ[x2£¬y2]ʹһ´Îº¯Êýy=ax+2bºÍ·´±ÈÀýº¯Êýy=$-\frac{c}{x}$Ϊ¡°ÁªÒö¡±º¯Êý£¬ÆäÖУ¬ÊµÊýa£¾b£¾c£¬a+b+c=0£¬ÉèL=[x1-x2]£¬ÇóLµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬ÒÑÖªAB=4£¬AC=3£¬BC=5£¬ÒÔBCËùÔÚµÄÖ±ÏßΪyÖᣬÒÔµãCΪԭµã½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£®xÖá½»ADÓÚµãE£¬ÓÐÒ»¶¯µãPÒÔ5¸öµ¥Î»/ÃëµÄËÙ¶ÈÐÜAµã³ö·¢£¬µ½´ïBµã£¬ÔÙµ½CµãÍ£Ö¹£¬ÁíÒ»¶¯µãFÒÔ3¸öµ¥Î»/ÃëµÄËٶȴÓCµã³ö·¢ÏòxÖáµÄÕý·½ÏòÔ˶¯£¬ºÍµãPͬʱ¿ªÊ¼£¬Í¬Ê±Í£Ö¹Ô˶¯£¬ÁîÔ˶¯µÄʱ¼äΪt£®
£¨1£©ÇóµãA£¬EµÄ×ø±ê£®
£¨2£©µ±PµãÔÚABÉÏÔ˶¯Ê±£¬ÉèÖ±ÏßPFµÄº¯Êý½âÎöʽΪy=kx+b£¬ÔÚÔ˶¯µÄ¹ý³ÌÖУ¬kµÄ´óСÊÇ·ñÓëtÓйأ¿ÈôÎ޹أ¬ÇëÇó³ökµÄÖµ£»ÈôÓйأ¬Çëд³ökÓëtµÄº¯Êý¹Øϵʽ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©ÔÚÕû¸öÔ˶¯µÄ¹ý³ÌÖУ¬ÇóPFµÄÖеãµÄÔ˶¯¹ì¼£³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬AµãÔÚÔ­µã×ó²à£¬BµãµÄ×ø±êΪ£¨4£¬0£©£¬ÓëyÖá½»ÓÚC£¨0£¬-4£©µã£¬µãPÊÇÖ±ÏßBCÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽ£®
£¨2£©Á¬½ÓPO¡¢PC£¬²¢°Ñ¡÷POCÑØCO·­ÕÛ£¬µÃµ½ËıßÐÎPOP¡äC£¬ÄÇôÊÇ·ñ´æÔÚµãP£¬Ê¹ËıßÐÎPOP¡äCΪÁâÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎABPCµÄÃæ»ý×î´ó£¿Çó³ö´ËʱPµãµÄ×ø±êºÍËıßÐÎABPCµÄ×î´óÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬µãEÊÇAD±ßÉÏÒ»µã£¬ÇÒ CE¡ÍBDÓÚµãF£¬½«¡÷DECÑØ´ÓDµ½AµÄ·½ÏòƽÒÆ£¬Ê¹µãDÓëµãAÖغϣ¬µãEƽÒƺóµÄµã¼ÇΪG£®
£¨1£©»­³ö¡÷DECƽÒƺóµÄÈý½ÇÐΣ»
£¨2£©ÈôBC=$2\sqrt{5}$£¬BD=6£¬CE=3£¬ÇóAGµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬µÈ±ß¡÷OACµÄ±ß³¤ÊÇ2£¬µãOÓëÔ­µãÖغϣ¬µãBÊÇxÖáÕý°ëÖáÉϵĶ¯µã£¬ÒÔABΪ±ßÏòÉÏ×÷µÈ±ß¡÷ABE£®
£¨1£©Èçͼ1£¬µ±EB¡ÍxÖáʱ£¬ÇóÖ±ÏßCEµÄ½âÎöʽ£»
£¨2£©Á¬½ÓCE£¬Èçͼ2£®
¢ÙÅжÏCEÓëBOÊÇ·ñÏàµÈ£¬²¢ËµÃ÷ÀíÓÉ£»
¢ÚÉèµãEµÄºá×ø±êΪm£¬ÇóµãEµÄ×ø±ê£¨Óú¬mµÄ´úÊýʽ±íʾ£©£¬²¢ÅжϵãEÊÇ·ñÒ»¶¨ÔÚ£¨1£©ÖÐËùÇóµÄÖ±ÏßCEÉÏ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÊýѧÉÏ£¬¶ÔÓÚÁ½¸öÕýÊýpºÍqÓÐÈýÖÖƽ¾ùÊý£¬¼´ËãÊõƽ¾ùÊýA¡¢¼¸ºÎƽ¾ùÊýG¡¢µ÷ºÍƽ¾ùÊýH£¬ÆäÖÐ$A=\frac{p+q}{2}$£¬$G=\sqrt{pq}$£¬¶øµ÷ºÍƽ¾ùÊýHÂú×ã$\frac{1}{p}-\frac{1}{H}=\frac{1}{H}-\frac{1}{q}$£®ÎÒÃÇ°ÑA¡¢G¡¢H³ÆΪp¡¢qµÄƽ¾ùÊý×飮
¢ÙÈôp=2£¬q=6£¬ÔòA=4£¬G=2$\sqrt{3}$£¬H=3£®
¢Ú¸ù¾ÝÉÏÊö¹Øϵ£¬¿ÉÒÔÍƵ¼³öA¡¢G¡¢HÈýÕߵĵÈÁ¿¹ØϵG2=AH£®
¢ÛÏÖÔÚСÃ÷ÊÖÀïÓÐÒ»ÕÅ¿¨Æ¬£¬ÉÏÃæ±êÓÐÊý×Ö$\frac{32}{5}$£¬ÁíÍâÔÚÒ»¸ö²»Í¸Ã÷µÄ²¼´üÖÐÓÐÈý¸öСÇò£¬±íÃæ·Ö±ð±êÓÐ10£¬8£¬1£¬ÕâÈý¸öÇò³ýÁ˱êµÄÊý²»Í¬Í⣬ÆäÓà¾ùÏàͬ£®Èô´Ó²¼´üÖÐÈÎÒâÃþ³öÁ½¸öСÇò£¬ÇóÃþ³öµÄÁ½¸öÊý×ÖÓ뿨ƬÉÏÊý×ÖÇ¡ºÃ¹¹³Éƽ¾ùÊý×éµÄ¸ÅÂÊ£®£¨ÇëÓá°»­Ê÷״ͼ¡±»ò¡°ÁÐ±í¡±µÈ·½·¨¸ø³ö·ÖÎö¹ý³Ì£¬²¢Çó³ö½á¹û£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®·½³Ì4x2-kx+6=0µÄÒ»¸ö¸ùÊÇ2£¬ÄÇôkµÄÖµºÍ·½³ÌµÄÁíÒ»¸ö¸ù·Ö±ðÊÇ£¨¡¡¡¡£©
A£®5£¬$\frac{3}{4}$B£®11£¬$\frac{3}{4}$C£®11£¬-$\frac{3}{4}$D£®5£¬-$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÊÇ·ñ´æÔÚx£¬Ê¹µÃµ±y=5ʱ£¬·Öʽ$\frac{x+y}{{x}^{2}-{y}^{2}}$µÄֵΪ0£¿Èô´æÔÚ£¬Çó³öxµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸