分析 (1)由四边形ADEF是正方形与AB=AC,∠BAC=90°,易证得△BAD≌△CAF,然后由全等三角形的性质,可证得CF=BD,继而求得∠BCA+∠ACF=90°,即CF⊥BD;
(2)当AB≠AC,证不出△BAD≌△CAF,即结论不成立.
解答 解:(1)∵四边形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF(SAS),
∴CF=BD,
∴∠B=∠ACF,
∴∠B+∠BCA=90°,
∴∠BCA+∠ACF=90°,
即CF⊥BD;
(2)当AB≠AC,证不出△BAD≌△CAF,即结论不成立.
点评 此题考查了正方形的性质、全等三角形的判定与性质以及直角三角形的性质.解题的关键是证明△BAD≌△CAF,此题难度适中,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\overrightarrow{AD}$=$\overrightarrow{EB}$ | B. | $\overrightarrow{AB}$=$\overrightarrow{DC}$ | C. | $\overrightarrow{AB}$=$\overrightarrow{DE}$ | D. | $\overrightarrow{AD}$=$\overrightarrow{EC}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com