【题目】如图,已知抛物线y=x2﹣4x+3与x轴交于A,B两点,其顶点为C.
(1)对于任意实数m,点M(m,﹣2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)若点D在x轴上,则在抛物线上是否存在点P,使得PD∥BC,且PD=BC?若存在,求点P的坐标;若不存在,请说明理由.
【答案】(1)不在;(2)答案见解析;(3)(,1)或(,1).
【解析】试题分析:(1)假如点M(m,﹣2)在该抛物线上,则﹣2=m2﹣4m+3,通过变形为:m2﹣4m+5=0,由根的判别式就可以得出结论;
(2)如图,根据抛物线的解析式求出点C的坐标,再利用勾股定理求出AB、AC和BC的值,由勾股定理的逆定理就可以得出结论.
(3)假设存在点P,根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,就可以求得P点的纵坐标为1,代入抛物线的解析式就可以求出P点的横坐标.
试题解析:解:(1)假如点M(m,﹣2)在该抛物线上,∴﹣2=m2﹣4m+3,∴m2﹣4m+5=0,∴△=(﹣4)2﹣4×1×5=﹣4<0,∴此方程无实数解,∴点M(m,﹣2)不会在该抛物线上;
(2)过点C作CH⊥x轴,交x轴与点H,连接CA、CB.如图,当y=0时,x2﹣4x+3=0,x1=1,x2=3.∵点A在点B左侧,∴A(1,0),B(3,0),∴OA=1,OB=3,∴AB=2.
∵y=x2﹣4x+3,∴y=(x﹣2)2﹣1,∴C(2,﹣1),∴AH=BH=CH=1.
在Rt△AHC和Rt△BHC中,由勾股定理得,AC=,BC=,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形;
(3)存在这样的点P.
∵PD∥BC,PD=BC,∴四边形PBCD是平行四边形,∴根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,∴点P的纵坐标是1.∵点P在抛物线y=x2﹣4x+3上,∴x2﹣4x+3=1,解得x1=2﹣,x2=2+,∴点P的坐标是(2﹣,1)或(2+,1).
科目:初中数学 来源: 题型:
【题目】如图 1,AB∥CD,点 E 在 AB 上,点 M 在 CD 上,点 F 在直线 AB,CD 之间,连接 EF、FM, EF⊥FM,∠CMF=140°.
图 1 图 2 图 3
(1)直接写出∠AEF 的度数为 ________;
(2)如图 2,延长 FM 到 G,点 H 在 FG 的下方,连接 GH,CH,若∠FGH=∠H+90°, 求∠MCH 的度数;
(3)如图 3,作直线 AC,延长 EF 交 CD 于点 Q,P 为直线 AC 上一动点,探究∠PEQ,∠PQC 和∠EPQ 的数量关系,请直接给出结论.(题中所有角都是大于 0°小于 180°的角)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场经销一种高档水果,若每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,求:
(1)每千克应涨价多少元?
(2)该水果月销售(按每月30天)是多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是x1,x2,求代数式+-的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上.
(1)求m的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
对于多项式,如果我们把代入此多项式,发现的值为0,这时可以确定多项式中有因式:同理,可以确定多项式中有另一个因式,于是我们可以得到:.
又如:对于多项式,发现当时,的值为0,则多项式有一个因式,我们可以设,解得,,于是我们可以得到:.
请你根据以上材料,解答以下问题:
(1)当 时,多项式的值为0,所以多项式有因式 ,从而因式分解 .
(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①;②.
(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:
代数式有因式 , , ,
所以分解因式 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,BM⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC与∠C的关系为( )
A.∠ABC=2∠CB.∠ABC=∠CC.∠ABC=∠CD.∠ABC=3∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com