【题目】如图1,抛物线与轴交于两点,与轴交于点,,矩形的边,延长交抛物线于点.
(1)求抛物线的表达式;
(2)如图2,点是直线上方抛物线上的一个动点,过点作轴的平行线交直线于点,作,垂足为.设的长为,点的横坐标为,求与的函数关系是(不必写出的取值范围),并求出的最大值;
(3)如果点是抛物线对称轴上的一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为y=﹣x2﹣x+2;(2)l=﹣(m+)2+,最大值为;(3)(2,﹣)或(﹣4,﹣)或(﹣2,2).
【解析】
试题分析:(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)可先求得E点坐标,从而可求得直线OE解析式,可知∠PGH=45°,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;
(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得△MFN≌△AOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线解析式可求得M点坐标.
试题解析:(1)∵矩形OBDC的边CD=1,
∴OB=1,
∵AB=4,
∴OA=3,
∴A(﹣3,0),B(1,0),
把A、B两点坐标代入抛物线解析式可得
,
解得,
∴抛物线解析式为y=﹣x2﹣x+2;
(2)在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,
∴E(﹣2,2),
∴直线OE解析式为y=﹣x,
由题意可得P(m,﹣ m2﹣m+2),
∵PG∥y轴,
∴G(m,﹣m),
∵P在直线OE的上方,
∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+,
∵直线OE解析式为y=﹣x,
∴∠PGH=∠COE=45°,
∴l=PG= [﹣(m+)2+]=﹣(m+)2+,
∴当m=﹣时,l有最大值,最大值为;
(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,
则∠ALF=∠ACO=∠FNM,
在△MFN和△AOC中
∴△MFN≌△AOC(AAS),
∴MF=AO=3,
∴点M到对称轴的距离为3,
又y=﹣x2﹣x+2,
∴抛物线对称轴为x=﹣1,
设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,
当x=2时,y=﹣,当x=﹣4时,y=,
∴M点坐标为(2,﹣)或(﹣4,﹣);
②当AC为对角线时,设AC的中点为K,
∵A(﹣3,0),C(0,2),
∴K(﹣,1),
∵点N在对称轴上,
∴点N的横坐标为﹣1,
设M点横坐标为x,
∴x+(﹣1)=2×(﹣)=﹣3,解得x=﹣2,此时y=2,
∴M(﹣2,2);
综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).
科目:初中数学 来源: 题型:
【题目】(2015南通)如图,在ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)(2017·黄冈)已知:如图,一次函数y=-2x+1与反比例函数y=的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连结DE.
(1)求k的值;
(2)求四边形AEDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax经过点A(4,2),点B在双曲线y=(x>0)的图象上,连结OB、AB,若∠ABO=90°,BA=BO,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.
(1)求抛物线的函数表达式;
(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;
(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.
(1)求抛物线的解析式.
(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.
(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com