【题目】如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED时,△AOE的面积为4,则四边形EFCD的面积是( )
A.8B.12C.16D.32
【答案】C
【解析】
根据等底等高的三角形面积相等可得S△DOE=S△AOE=4,进而可得S△COD=S△AOD=8,再由平行四边形性质可证明△COF≌△AOE(ASA),S△COF=S△AOE=4,即可得S四边形EFCD=16.
解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD
∴∠DAC=∠ACB,
∵∠AOE=∠COF
∴△COF≌△AOE(ASA)
∵S△AOE=4,AE=ED
∴S△COF=S△DOE=S△AOE=4,
∴S△AOD=8
∵AO=CO
∴S△COD=S△AOD=8
∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到,第2次移动到,第3次移动到,……,第n次移动到,则△O的面积是( )
A.504B.C.D.505
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,甲在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是( )米
A. 150 B. 175 C. 180 D. 225
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A、B两点(A点在B点左侧),与轴交于点C,连接BC、AC,tan∠OCB -tan∠OCA=1,OB=4OA.
(1)求和b的值;
(2)点E在线段BC上,点F在BC的延长线上,且BE=CF,点D是直线BC下方抛物线上一点,当△EDF是以EF为斜线的直角三角形,且4ED=3FD时,求D点坐标;
(3)在(2)的条件下,过点A作AG⊥轴,R为抛物线上CD段上一点,连接AR,点K在AR上,连接DK并延长交AG于点G,连接DR,且2∠RDK+∠RKD=90°,∠GAR=∠RDK,若点M()w为坐标平面内一点,直线MD与直线BC交于点N,当MN=DN时,求△MRD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,D为AC上一点,连接BD,DF⊥BD交AB于点F,△BDF的外接圆⊙O与边BC相较于点M,与AC相切于点D。过点M作AB的垂线交BD于点E,交⊙O于点N,交AB于点H,连接FN.
(1)求证:BD平分∠ABC;
(2)连接FM与BD相交于点K,求证:MK=ME;
(3)若AF=1,tan∠N=,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型花片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用不超过6300元,求A型芯片至少购买多少条?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校260名学生参加献爱心捐款活动,每人捐款4~7元,活动结束后随机抽查了20名学生每人的捐款数量,并按每人的捐款数量分为四种类型,A:捐款4元;B:捐款5元;C:捐款6元;D:捐款7元,并将其绘成如图所示的条形统计图.
(1)通过计算补全条形统计图;
(2)直接写出这20名学生每人捐款数量的众数和中位数;
(3)求这20名学生每人捐款数量的的平均数,并估计260名学生共捐款多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.
(1)求点C的坐标;
(2)求证:△OAB是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD 的度数.
结合图形,完成填空:
解法 1:
因为,
所以
因为
所以
所以
解法2:
因为 , ,①
所以 .②
因为
所以
在上面①到②的推导过程中,理由依据是: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com