【题目】如图,,,,分别平分的外角,内角,外角.以下结论:①;②;③;④平分;⑤.其中正确的结论有______________.(把正确结论序号填写在横线上)
【答案】①②③⑤
【解析】
根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.
解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABD=∠ADB,∴②正确;
∵AD平分∠EAC,CD平分∠ACF,
∴∠DAC=∠EAC,∠DCA=∠ACF,
∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,
∴∠ADC=180°-(∠DAC+∠ACD)
=180°-(∠EAC+∠ACF)
=180°-(∠ABC+∠ACB+∠ABC+∠BAC)
=180°-(180°+∠ABC)
=90°-∠ABC,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵BD平分∠ABC,
∴∠CBD=∠CBD=∠ABC,
∵CD平分∠ACF,
∴∠DCF=∠ACF,
∴∠DCF-∠CBD=∠ACF-∠ABC
∵∠BAC=∠ACF-∠ABC
∠BDC=∠DCF-∠CBD
∴∠BDC=∠BAC,⑤正确.
故答案为:①②③⑤.
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,∠ABC=3∠C,∠BAC的平分线AD交BC于D,BE⊥AD于E.
(1)如图l,求证:AC﹣AB=2BE.
(2)如图2,将∠DCA沿直线AC翻折,交BA的延长线于点M,连接MD交AC于点N;MA=BA,BE=1,AB=,求AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红星中学计划组织“春季研修活动,活动组织负责人从公交公司了解到如下租车信息:
车型 | ||
载客量(人/辆) | ||
租金(元/辆) |
校方从实际情况出发,决定租用、型客车共辆,而且租车费用不超过元。
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有人参加,请问校方应如何租车,且又省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天,一蔬菜经营户用90元钱按批发价从蔬菜批发市场买了西红柿和豆角共50kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如下表所示:
品名 | 西红柿 | 豆角 |
批发价(单位:元/kg) | 2.0 | 1.5 |
零售价(单位:元/kg) | 2.9 | 2.6 |
如果西红柿和豆角全部以零售价售出,他当天卖这些西红柿和豆角赚了多少元钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题是( )
A. 如果三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形
B. 如果直角三角形两直角边的长分别为a和b,那么斜边的长为a2+b2
C. 若三角形三边长的比为1:2:3,则这个三角形是直角三角形
D. 如果直角三角形两直角边分别为a和b,斜边为c,那么斜边上的高h的长为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:
①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.
其中说法正确的有_________(把你认为说法正确的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A,B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB的两个端点为A、B分别在y轴正半轴、x轴负半轴上,直线CD分别交x轴正半轴、y轴负半轴于点C、D,且AB∥CD.
(1)如图1,若点A(0,a)和点B(b,0)的坐标满足
ⅰ)直接写出a、b的值,a=_____,b=_____;
ⅱ)把线段AB平移,使B点的对应点E到x轴距离为1,A点的对应点F到y轴的距离为2,且EF与两坐标轴没有交点,则F点的坐标为_____;
(2)若G是CD延长线上一点DP平分∠ADG,BH平分∠ABO,BH的反向延长线交DP于P(如图2),求∠HPD的度数;
(3)若∠BAO=30°,点Q在x轴(不含点B、C)上运动,AM平分∠BAQ,QN平分∠AQC,(如图3)真接出∠BAM与∠NQC满足的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com