【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
时间t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行驶距离s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1 , t2(t1<t2)时,对应s的值分别为s1 , s2 , 请比较 与 的大小,并解释比较结果的实际意义.
【答案】
(1)解:描点图所示:(画图基本准确均给分);
(2)解:由散点图可知该函数为二次函数
设二次函数的解析式为:s=at2+bt+c,
∵抛物线经过点(0,0),
∴c=0,
又由点(0.2,2.8),(1,10)可得:
解得:a=﹣5,b=15;
∴二次函数的解析式为:s=﹣5t2+15t;
经检验,其余各点均在s=﹣5t2+15t上
(3)解:①汽车刹车后到停止时的距离即汽车滑行的最大距离,
当t=﹣ 时,滑行距离最大,S= ,
即刹车后汽车行驶了 米才停止.
②∵s=﹣5t2+15t,∴s1=﹣5t12+15t1,s2=﹣5t22+15t2
∴ =﹣5t1+15;
同理 =﹣5t2+15,
∵t1<t2,
∴ > ,
其实际意义是刹车后到t2时间内的平均速度小于刹车后到t1时间内的平均速度
【解析】(1)描点,用平滑曲线连接即可;(2)设出二次函数解析式,把3个点的坐标代入可得二次函数解析式,进而再把其余的点代入验证是否在二次函数上;(3)①汽车在刹车时间最长时停止,利用公式法,结合(2)得到的函数解析式,求得相应的最值即可;②分别求得所给代数式的值,根据所给时间的大小,比较即可.
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2 , 当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2 . C2的图象与x轴交于A、B两点(点A在点B的左侧).
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是 .
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1 , 第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2 , 第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1 , 第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,点E、F在AB边上,连接DE,CF交AD于G,点E是BF中点.
(1)求证:△AFG∽△AED
(2)若FG=2,G为AD中点,求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两座城市的中心火车站A,B两站相距360 km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h,当动车到达B站时,特快列车恰好到达距离A站135 km处的C站.求动车和特快列车的平均速度各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:
①AP的最小值是1,最大值是4;
②当AP=2时,△APO是等腰三角形;
③当AP=1时,△APO是等腰三角形;
④当AP=时,△APO是直角三角形;
⑤当AP=时,△APO是直角三角形.
其中正确的是( )
A. ①④⑤ B. ②③⑤ C. ②④⑤ D. ③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com